• Title/Summary/Keyword: linear elastic analysis

Search Result 761, Processing Time 0.026 seconds

Nonlinear Material and Time Dependent Analysis of Prestressed Concrete Tank (P.C.탱크의 비선형 재료와 시간의존성 해석)

  • 조현영;이진수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.65-67
    • /
    • 1991
  • A numerical analysis in linear-elastic state for prestressed concrete tanks including the time-dependent effects due to creep and shrinkage of concrete, relaxation of prestressing cable have been studied by many researchers. In this paper, not only the time dependent factor but also the nonlinear elasto-plastic behavior are considered. Prestresses are considerde in vertical and circumferential direction.

  • PDF

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum (비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향)

  • Song, Jong-Keol;Jin, He-Shou;Jang, Dong-Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.25-37
    • /
    • 2008
  • The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.

A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System (기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

Evaluation of Reactor Internals Integrity due to 5.5m Concentric Free Fall of KSNP+ Reactor Vessel Closure Head (KSNP+ 원자로덮개 5.5m 수직 낙하 시 원자로내부구조물 건전성 평가)

  • Namgyng, Ihn;Jeong, Seung-Ha;Lee, Dae-Hee;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1358-1363
    • /
    • 2003
  • Due to the application of Integrated Head Assembly (IHA) in KSNP+ reactor design, an investigation of reactor internals integrity is carried out to assure that the adoption of IHA does not affect the safety of reactor operation. One of the postulated accident events is the R.V. closure head fall from 5.5m high directly above the reactor vessel that may occur during the refueling operation. The analysis model consists of lumped mass elements of the entire reactor vessel and internals. Because of extreme load, separate elastic-plastic analyses are done for the members that undergo plastic deformation. The analysis verified that the stresses of the reactor internals and the fuel assemblies are within the bound of allowable stress limits and the integrity of the fuel assemblies is maintained.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions (하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1852-1860
    • /
    • 1991
  • A shape design sensitivity of the elastic deformation due to a change of traction boundary condition is presented. The solution of governing equations for a linear elasticity problem is obtained by finite element method and the traction boundary is defined by design variables. The performance functional to be considered involves both the domain and boundary integral. Variations of geometry can be defined as design velocity. Using material derivative concept and adjoint equations, the design sensitivity is derived by Lagrange multiplier method. For a given geometry of a structure, the change of traction boundary is described by the tangential component of the design velocity only. The final result for the shape design sensitivity is formulated as the boundary integral form, the integrand is defined by tangential component of design velocity and first order derivatives of parameters. Numerical implementation of design sensitivity is discussed and is compared with the difference of the actual values.

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

Buckling analyses of flat plates through two-element plate concept by using finite element method (유한요소법을 이용한 분할판 개념하의 평판 좌굴해석)

  • 민철기;손원기;주재현;류시융
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.79-89
    • /
    • 1995
  • Two-element plate concept is incorporated into the buckling problem in order to simplify the nonlinear distribution of stress through the thickness of plate. Finite element formulations and programs based upon the Reissner functional and the modified Reissner functional using two-element plate concept are developed for buckling analysis of plates under axial compression. The two programs have been applied to obtain the linear elastic buckling behavior of axially compressed flat plates. Excellent agreement of linear elastic-solution results with exact or approximate solutions of other authors for the same boundary conditions proves the validity of the finite element method using two-element plate theory.

  • PDF

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.