• Title/Summary/Keyword: linear elastic analysis

Search Result 758, Processing Time 0.035 seconds

Effects of the Non-linear Stress-Strain Behavior of RAP Concrete on Structural Responses for Rigid Pavement Application (RAP 콘크리트의 비선형 응력-변형률 특성이 강성포장 구조해석에 미치는 영향)

  • Kim, Kukjoo;Chun, Sanghyun;Park, Bongsuk;Tia, Mang
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • PURPOSES : This study is primarily focused on evaluating the effects of the non-linear stress-strain behavior of RAP concrete on structural response characteristics as is applicable to concrete pavement. METHODS : A 3D FE model was developed by incorporating the actual stress-strain behavior of RAP concrete obtained via flexural strength testing as a material property model to evaluate the effects of the non-linear stress-strain behavior to failure on the maximum stresses in the concrete slab and potential performance prediction results. In addition, a typical linear elastic model was employed to analyze the structural responses for comparison purposes. The analytical results from the FE model incorporating the actual stress-strain behavior of RAP concrete were compared to the corresponding results from the linear elastic FE model. RESULTS : The results indicate that the linear elastic model tends to yield higher predicted maximum stresses in the concrete as compared to those obtained via the actual stress-strain model. Consequently, these higher predicted stresses lead to a difference in potential performance of the concrete pavement containing RAP. CONCLUSIONS : Analysis of the concrete pavement containing RAP demonstrated that an appropriate analytical model using the actual stress-strain characteristics should be employed to calculate the structural responses of RAP concrete pavement instead of simply assuming the concrete to be a linear elastic material.

Linear-Elastic Behavior Analysis of CFTA Girder Filled with High-Strength Concrete (고강도 콘크리트를 적용시킨 CFTA 거더의 선형 탄성 거동분석)

  • Choi, Sung-Woo;Lee, Hak;Jung, Min-Chul;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.511-516
    • /
    • 2008
  • Recently, many researchers are studying a high-strength concrete, composite materials and composite structures to build structures more economic and stable all over the world. For instance, there is CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure to maximize the efficiency of structure and economic. In this study, linear-elastic behavior analysis of CFTA gider filled with high-strength concrete was performed by using ABAQUS 6.5-1 and also the result was analyzed.

  • PDF

A study on the non-linear analysis of the elastic catenary cable considering kinetic damping (동적감쇠를 고려한 탄성 현수선 케이블의 비선형 해석에 관한 연구)

  • 한상을;정명채;이진섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.331-338
    • /
    • 2000
  • In this paper, a non-linear finite element formulation for the spatial cable-net structures is simulated and using this formulation, the characteristics of structural behaviors for the elastic catenary cable are examined In the simulating procedure for the elastic catenary cable, nodal forces and tangential stiffness matrices are derived using catenary parameters of the exact solutions by a governing differential equation of catenary cable, cable self-weights and unstressed cable length. Dynamic Relaxation Method that considers kinetic damping is used for the structure analysis and Newton Raphson Method is used to verify the accuracy of solutions. In the analysis of two dimensional cable, the results obtain from the elastic catenary elements are shown more accurate than does of truss elements and in the case of spatial cable-net structures, Dynamic Relaxation Method is more stable to be converged than Newton Raphson Method.

  • PDF

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

Non-Linear Behavior Analysis for Stratospheric Airship Envelope (성층권 비행선 기낭 막재료에 대한 비선형 거동 연구)

  • Suh Young Wook;Woo Kyeongsik
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • In this paper, geometrically non-linear finite element analyses were performed to study the mechanical behavior of the material system of the envelope of stratospheric airships. The microstructure of the load-bearing plain weave layer was identified and modeled. The Updated Lagrangian formulation was employed to consider the geometric non-linearity as well as the induced structural non-linearity for the fiber tows. The stress-strain behavior was predicted and the effective elastic modulus was calculated by numerical experiments. It was found the non-linear stress-strain curves were largely different from those by linear analysis. And non-linear elastic moduli were much higher than linear elastic moduli. The difference was more distinguishable when the tow waviness ratio was smaller.

Development of Viscoelastic Finite Element Analysis Code for Pavement Structures (도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발)

  • Lee, Chang-Joon;Yoo, Pyeong-Jun;Choi, Ji-Young;Ohm, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach

  • Bayat, Mahmoud;Bayat, Mahdi;Kia, Mehdi;Ahmadi, Hamid Reza;Pakar, Iman
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-361
    • /
    • 2018
  • In this paper, nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation is studied. It has been tried to prepare a semi-analytical solution for whole domain of vibration. Only one iteration lead us to high accurate solution. The effects of linear elastic foundation on the response of the beam vibration are considered and studied. The effects of important parameters on the ratio of nonlinear to linear frequency of the system are studied. The results are compared with numerical solution using Runge-Kutta $4^{th}$ technique. It has been shown that the Max-Min approach can be easily extended in nonlinear partial differential equations.

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Nonlinear Coupling Factor in Dynamic Model of Flexible Manipulator (유연 매니퓰레이터 동역학 모델링의 비선형 커플링 요소)

  • Lee Jin-Ho;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.404-408
    • /
    • 2005
  • Having flexibility in a manipulator will degrade trajectory tracking control and manipulator tip positioning. In practice, however, constraints imposed by various operating requirements, will render the presence of such flexibility unavoidable. The dynamic analysis of the flexible manipulator is essential in designing proper control systems. A flexible manipulator consists of infinite number of elastic modes and the modes are usually coupled to each other. For the practicality, however, it is usually assumed that the flexible system consists of finite number of elastic modes and the modes are decoupled. These assumptions result in a linear and decoupled mathematical model of the flexible manipulator and simplify the analysis of the dynamic behavior and the design of the control system. The decoupling and linearization of the flexible link, however, has been assumed without in depth analysis. This paper focuses on the analysis of the significance of the non-linear coupling factors.

  • PDF