• Title/Summary/Keyword: linear brushless dc motor

Search Result 40, Processing Time 0.033 seconds

Power & Industrial System R&D Center, Hyosung Corporation (부하 상태에 따른 선형 BLDC 전동기의 동특성 해석 및 실험적 고찰)

  • Jo, Won-Young;Kim, Byong-Kuk;Kim, Tae-Hyun;Hwang, Dong-Won;Jung, Kun-Seok;Cho, Yun-Hyun;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.80-82
    • /
    • 2005
  • This paper presents the dynamic characteristics of a linear brushless DC(BLDC) motor with permanent magnet excitation for the precision conveyor according to the load condition. In order to investigate the accurate dynamic performance of tile linear BLDC motor driving with 6 step inverter- fed, finite element techniques coupling with external circuit models, together with the simultaneous simulation of motion of the mover system, arc proposed. The results of finite element analysis arc compared to the experimental ones.

  • PDF

Thust Ripples Reduction in the Moving Magnet Type LDM Using FEM & Phase Control (유한요소법과 위상제어를 이용한 선형직류전동기의 추력리플 저감에 관한 연구)

  • Choi, Jae-Hak;Min, Byoung-Wook;Lee, Ju;Im, Tae-Bin;Sung, Ha-Gyeong;Kim, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.9-11
    • /
    • 1999
  • A brushless and slotless DC linear motor(LDM)employing a movable set of neodymium-iron-boron type of magnets has high performances in advantages of large thrust per weights and accurate position control. But the Moving Magnet LDM produces thrust ripples owing to mainly end-effects, shape and magnetization of permanent magnets and so on. This paper represents the improvements of thrust ripples using the finite elements methods and phase control topology.

  • PDF

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.

Characteristic Analysis of Radial Magnetization Permanent magnet with High Speed BLDC Motor (반경방향 착자 영구자석을 갖는 초고속 BLDC 전동기의 특성해석)

  • Jang, Seok-Myeong;Jeong, Jae-Hoon;Choi, Ji-Hwan;Cho, Han-Wook;Lee, Sung-Ho;Lee, Yong-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1017-1018
    • /
    • 2011
  • This paper deals with a magnetic field analysis on brushless DC(BLDC) motor with radial magnetization permanent magnet. In order to analyze the magnetic field, multi-layer analysis based on space harmonics method is employed. Finally, the analytical results are validated by non-linear Finite Element Analysis(FEA).

  • PDF

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • Kim Tae-Sung;Ahn Sung-Chan;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.25-29
    • /
    • 2001
  • The BLDCM (Brushless DC Motor) characterized by linear torque to current, and speed to voltage has low acoustic noise, and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. But, it produce torque ripple due to the motor inductance components in stator windings and back-EMF, when armature current is commutated. Therefore, it is difficult to apply the BLDCM to a precision servo drive system. In this paper is proposed to a new current control algorithm with using fourier series coefficients can minimize torque ripple due to the phase current commutation of BLDCM. Simulation and Experimental results prove the effectiveness the proposed algorithm through comparison with the conventional used unipolar PWM method.

  • PDF

Design of linear synchronous motor with slotted structure (치-슬롯을 갖는 직선형 동기 전동기의 설계 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Jang-Young;Park, Ji-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.197-199
    • /
    • 2006
  • This paper presents a analytical field solutions for the general class of Linear Brushless DC(LBLDC) motors with PM mover and 3-phase winding stator. In our magnetic field analysis, we have adopted an approach which can treat both magnetized material and winding from the each field analysis by magnetic vector potential considering 2-Dimensional slot modeling. Therefore, we give accurate analytical formulas and object function for design and parameters estimation by its magnetic field.

  • PDF

The Design of Variable Structure Position Controller for Bushless DC Motor Using New Switching Function (새로운 스위칭 함수를 이용한 브러시리스 직류 전등기의 가변 구조 위치 제어기 설계)

  • Chun, Hee-Young;Park, Gwi-Tae;Koh, Po-Hyoung;Lee, Sang-Lak;Song, Myung-Hyun;Yeo, Hyeong-Gee
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.336-339
    • /
    • 1990
  • This paper discusses the application of VSCS(Variable Structure Control System) to position control of a trapezoidal type brushless DC motor. In order to simplify the overall control system and to improve the robustness, a new switching function which is composed of linear combination of only measurable state variables Sr(x) and Sr(x) is defined. The proposed new switching function is implemented using a digital signal processor(DSP). A general PWM amplifier is replaced by an ON-OFF pattern generator for the hardware simplification and digitalization. Experimental results are given to demonstrate the validity of the proposed control method.

  • PDF

Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension (자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구)

  • 김의석;안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-ll;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF