• Title/Summary/Keyword: linear array antenna

Search Result 146, Processing Time 0.031 seconds

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

Radiation Characteristics of an E-plane Linear Array Antenna Composed of Inductive Loaded Patch Antennas (Inductive loaded 마이크로스트립 패치 안테나를 이용한 E-평면 선형 배열 안테나의 방사 특성)

  • Yoon, Young-Min;Kwak, Eun-Hyuk;Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.59-67
    • /
    • 2013
  • The radiation characteristics of an E-plane linear array antenna composed of inductive loaded patch antennas (ILPAs) are investigated. The radiation characteristics of an ILP array antenna are significantly improved compared to those of a conventional array antenna because the mutual coupling of an ILP array antenna is very small. The patch length of a $5{\times}2$ ILPA for the enhancement of the radiation characteristics of a 5-element E-plane linear array antenna composed of ILPAs is presented.

Impact of Substrate Size on the Radiation Characteristics of an H-plane 5-Elements Linear Aperture Coupled Microstrip Patch Array Antenna (기판 크기가 H-평면 5소자 선형 개구면 결합 패치 배열 안테나의 방사 특성에 미치는 영향)

  • Bak, Hye-Lin;Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.37-45
    • /
    • 2016
  • The effect of substrate size on the radiation characteristics of an H-plane 5-elements linear array antenna with an aperture coupled microstrip patch antenna (ACMPA) as unit element is investigated. The distance between the patch center and the substrate edge on the E-plane ($d_E$) and that on the H-plane ($d_H$) at which the maximum broadside gain of an H-plane 5-elements linear array antenna occurs are the same to those of single ACMPA using a unit element. Besides, $d_E$ and $d_H$ at which the minimum broadside gain of an H-plane 5-elements linear array antenna occurs are almost the same to those of single ACMPA using a unit element. The edge effect on the radiation characteristics of an H-plane 5-elements linear array antenna is mainly determined by $d_E$. The optimum substrate size for the radiation characteristics of an H-plane linear array antenna could be obtained from that of single ACMPA using a unit element of an H-plane linear array antenna.

Performance Analysis of Linear Array Antenna for Anti-jamming GPS Systems (항재밍 GPS 시스템을 위한 선형 어레이 안테나 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, I design a linear array antenna simulator for anti-jamming GPS systems and perform various performance analysis by simulation. First, I generate simulated transmission signals through the analysis of GPS satellite signal structure, and analyze SNR(Signal to Noise power Ratio) performance of linear array antenna according to number of arrays under noise environments. In addition, I analyze the performance of the anti-jamming beam pattern using MMSE(Minimum Mean Square Error) signal processing method, and also analyze the anti-jamming performance considering antenna calibration problem when there are different delays between arrays.

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

SFCFOS Uniform and Chebyshev Amplitude Distribution Linear Array Antenna for K-Band Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • In this study, a compact series-fed center-fed open-stub (SFCFOS) linear array antenna for K-band applications is presented. The antenna is composed of a single-line 10-element linear array. A symmetrical Chebyshev amplitude distribution (CAD) is used to obtain a low sidelobe characteristic against a uniform amplitude distribution (UAD). The amplitude is controlled by varying the width of the microstrip patch elements, and open-ended stubs are arranged next to the last antenna element to use the energy of the radiating signal more effectively. We insert a series-fed stub between two patches and obtain a low mutual coupling for a 4.28-mm center-to-center spacing ($0.7{\lambda}$ at 21 GHz). A prototype of the antenna is fabricated and tested. The overall size of the uniform linear array is $7.04{\times}1.05{\times}0.0563{\lambda}_g^3$ and that of the Chebyshev linear array is $9.92{\times}1.48{\times}0.0793{\lambda}_g^3$. The UAD array yields a ${\mid}S_{11}{\mid}$ < -10 dB bandwidth of 1.33% (20.912-21.192 GHz) and 1.45% (20.89-21.196 GHz) for the CAD. The uniform array design gives a -23 dB return loss, and the Chebyshev array achieves a -30.68 dB return loss at the center frequency with gains of 15.3 dBi and 17 dBi, respectively. The simulated and measured results are in good agreement.

Ku band Linear Active phased Array Antenna Design and Fabrication (Ku 대역 선형 능동 위상 배열 안테나 설계 및 제작)

  • Ryu, Sung-Wook;Eom, Soon-Young;Kim, Nam
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.215-216
    • /
    • 2006
  • In this paper, the antenna the with linear active phased array of $1{\times}16$ operated in DBS band was designed. The antenna was composed of sixteen radiating elements, sixteen active channels and five Wilkinson power combiners with 4-channel inputs, a digital control board and a stabilizing DC bias board. The radiating element of the array has the structure of a microstrip stack patch with a left-hand circular polarization. And, each active channel consists of a low noise ampilifier, a 3-bit digital phase shifter and a variable analog attenuator. The breadboard of linear active phased array antenna was also fabricated to test the electrical performances. The radiation patterns of the antenna were measured after correcting initial phases of each active channel in aechoic chamber. And also, the beam scanning chracteristcs of $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ were measured.

  • PDF

Short-Ended Electromagnetically Coupled Coaxial Dipole Array Antenna

  • Kim, Joong-Pyo;Lee, Chang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.87-92
    • /
    • 2002
  • A short-ended electromagnetically coupled coaxial dipole array antenna is investigated theoretically. The antenna has an advantage of structural simplicity. The integral equations are derived for the proposed structure by use of the Fourier transform and mode expansion, and the simultaneous linear equations are obtained. The slot electric field and strip current are obtained by solving the simultaneous linear equations. The effects of slot and strip numbers on the radiation efficiency, beamwidth and directivity gain of the antenna are presented.

Compensation of a Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Park, Chiyeon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.182-186
    • /
    • 2004
  • This paper describes an advanced compensation for non-linear functions designed to remove steering aberrations from phased array antennas. This system alters the steering command applied to the antenna in a way that the appropriate angle commands are given to the array steering software for the antenna to point to the desired position instead of squinting. Artificial neural networks are used to develop the inverse function necessary to correct the aberration. Also a straightforward antenna steering function is implemented with neural networks for the 9-term polynomials of forward steering function. In all cases the aberration is removed resulting in small RMS angular errors across the operational angle space when the actual antenna position is compared with the desired position. The use of neural network model provides a method of producing a non-linear system that can correct antenna performance and demonstrates the feasibility of generating an inverse steering algorithm.

Adaptive array antenna using kalman filter method (Kalman filter법에 의한 어댑티브 어레이 안테나)

  • 박재성;오경석;주창복;박남천;정주수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.39-42
    • /
    • 1999
  • Adaptive array is using the array of antenna elements spatially and its output is the sum of each antenna elements output signal which is multiplied by the controlled weight coefficients corresponding to each elements. In this paper, for the BPSK and BFSK signals with S/I=2, S/N=10 is applied to the linear array antenna using the LMS & the Kalman filter algorithm. For the 4 elements equidistance linear array antenna system LMS and Kalman filter algorithm was used as the adaptive instruction principles and the application results to the constant amplitude envelope signals such as BPSK or BFSK can be seen that the computer simulation results are very fast in the convergence characteristics of directional patterns and the signal following characteristics.

  • PDF