• Title/Summary/Keyword: linear and nonlinear analyses

Search Result 284, Processing Time 0.023 seconds

Use of a Land Classification System in Forest Stand Growth and Yield Prediction on the Cumberland Plateau of Tennessee, USA (미국(美國) 테네시주(州) 컴벌랜드 고원(高原)의 임분(林分) 성장(成長)과 수확(收穫) 예측(豫測)에 있어서 Land Classification System의 사용(使用))

  • Song, Unsook;Rennie, John C.
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.365-377
    • /
    • 1997
  • Much of the Cumberland Plateau of Tennessee, USA is in mixed hardwoods for which there are no applicable growth and yield predictors. Use of site index as a variable in growth and yield prediction models is limited in most stands because their history is not known and many may not be even-aged. Landtypes may offer an alternative to site index for these mixed stands because they were designed to include land of about equal productivity. To determine vegetation by landtype, dependency between landtype and detailed forest type was tested with Chi-square. Differences in productivity among landtypes were tested by employing regression analyses and analysis of variance(ANOVA). Basal area growth was fitted to the nonlinear models developed by Moser and Hall(1969). Basal area growth and volume growth were also predicted as a function of initial total basal area and initial volume with linear regression by landtype and by landtype class. Differences in basal area growth and volume growth by landtype were tested with ANOVA. Dependency between site class and landtype was tested with Chi-square. Vegetation types seem to be related to landtypes in the study area although the validity of the test is questionable because of a high proportion of sparsely occupied cells. No statistically significant differences in productivity among landtypes were found in this study.

  • PDF

A Study on the Abstraction of Movements Based on Laban's Space Theory "Choreutics" (라반의 공간조화이론 "코레우틱스(Choreutics)"를 활용한 움직임의 추상적 시각화 연구)

  • Kim, Hyeran;Lee, Sang Wook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.371-381
    • /
    • 2017
  • This paper presents a methodology for creating abstract animation based on the human movement theories originating from the work of dance theorist Rudolf von Laban. Laban Movement Analysis is a method and language for describing, visualizing, interpreting and documenting all varieties of human movement, and Choreutics is based on universal patterns of nature and of human as part of a universal design. Laban defines the space of movements in a profoundly dualistic way. Outwardly, his objective and scientific definitions provide a concrete base for generating human movements in computer graphics in terms of geometric and motion primitives such as points, lines, planes, polygons, linear and nonlinear movements. On the other hand, he also offers a system for understanding the subtle characteristics about the way a movement is dynamically done with respect to inner intention. Laban's interpretations of human motion can be utilized potentially in plastic arts and computer arts. Our work was inspired by those physical and psychological analyses and computer algorithms have been developed for creating abstract animation. We presented our computer animation works entitled "Choreography" in the exhibitions: a special section in "2015 Craft Trend Fair" and "Make Your Movement" held in the Korean Cultural Centre in UK, 2016. In this paper, we describe our ideas and methods for creating abstract object movements based on the Laban's motion representations.

OPTIMAL DEELECTION OF EARTH-CROSSING OBJECT USING A THREE-DIMENSIONAL SINGLE IMPULSE (3차원에서의 순간적인 속도변화에 의한 ECO의 최적궤도변경)

  • Mihn, Byeong-Hee;Park, Sang-Young;Roh, Kyoung-Min;Choi, Kyu-Hong;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.249-262
    • /
    • 2005
  • Optimization problems are formulated to calculate optimal impulses for deflecting Earth-Crossing Objects using a Nonlinear Programming. This formulation allows us to analyze the velocity changes in normal direction to the celestial body's orbital plane, which is neglected in many previous studies. The constrained optimization in the three-dimensional space is based on a patched conic method including the Earth's gravitational effects, and yields impulsive ${\Delta}V$ to deflect the target's orbit. The optimal solution is dependent on relative positions and velocities between the Earth and the Earth-crossing objects, and can be represented by optimal magnitude and angle of ${\Delta}V $ as a functions of a impulse time. The perpendicular component of ${\Delta}V $ to the orbit plane can sometimes play un-negligible role as the impulse time approaches the impact time. The optimal ${\Delta}V $ is increased when the original orbit of Earth-crossing object is more similar to the Earth's orbit, and is also exponentially increased as the impulse time reaches to the impact time. The analyses performed in present paper can be used to the deflection missions in the future.

Quantitative Analysis on Intensity of 1936 Jirisan Earthquake by Estimating Seismic Response Characteristics at the Site of Five-story Stone Pagoda in Ssang-gye-sa (쌍계사 오층 석탑 부지의 지진 응답 특성 평가를 통한 1936년 지리산 지진 세기의 정량적 분석)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Jae-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.187-196
    • /
    • 2008
  • An earthquake of magnitude 5.0 occurred at Ssang-gye-sa, a Buddhist temple in Jirisan, located near the southern border of the Korean peninsula on 4 July 1936. It resulted in severe damage of several buildings and structures in Ssang-gye-sa. Particularly, the top component of a five-story stone pagoda in the temple was tipped over and fell down during the earthquake. This earthquake damage case would be usefully applied to estimating the intensity of ground motion in the Korean peninsula, a moderate seismicity region, where strong motion has never been recorded with the exception of historic seismic events. In order to estimate the local site effects and the corresponding ground motion at Ssang-gye-sa site, intensive site investigations including borehole drilling and in-situ seismic tests such as crosshole and SASW tests were performed in the temple area. Based on the site characteristics, site-specific seismic response analyses using various input motions were conducted for a representative Ssang-gye-sa site by means of both one-dimensional equivalent-linear and nonlinear methods with six input rock outcrop acceleration levels ranging from 0.044g to 0.220g. The resultant site-specific seismic responses indicated the amplified ground motions in the short-period range near the site period of Ssang-gye-sa. Furthermore, the intensity on rock outcrop of the 1936 Jirisan earthquake was estimated by making a comparison between the site responses analysis results in this study and the full-scaled seismic test of pagoda model in the prior study.