• Title/Summary/Keyword: line of force

Search Result 961, Processing Time 0.03 seconds

Indirect Cutting Force Measurement by Using Servodrive Current Sensing and it's Application to Monitoring and Control of Machining Process (이송모터 전류 감지를 통한 절삭력의 간접측정과 절삭공정 감시 및 제어에의 응용)

  • Kim, Tae-Yong;Choi, Deok-Ki;Chu, Chong-Nam;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • This paper presents an indirect cutting force measuring system, which uses the current signals from the AC servo drive units of the horizontal machining center, with its applications to the adaptive regulation of the cutting forces in various milling processes and to the on-line monitoring of tool breakage. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that the indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The whole scheme has been embedded in the commercial machining center and a series of cutting experiments on the face cutting processes are performed. The adaptive controller reveals reliable cutting force regulating capability against the various cutting conditions. It is also shown that the tool breakage in milling can be detected within one spindle revolution by adaptively filtering the current signals. The effect of the cutter run-out has been considered for the reliable on-line detection of tool breakage.

  • PDF

Development of Load Cell to Measure Contact Force of Pantograph (판토그라프 접촉력 측정을 위한 스트레인 게이지 내장형 센서 개발)

  • Park, Chan-Kyoung;Paik, Jin-Sung;Kim, Young-Guk;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.947-953
    • /
    • 2010
  • The KTX-Sancheon has been commercially operating on the high-speed line since March. 2. In order to verify the performance of high-speed train and core equipments such as current collection system, sophisticated tests and evaluating procedures should have been considering. In this paper, the load cell with a built-in strain-gauge which developed to improve measuring method of contact force between the pantograph and catenary system is introduced. The static test results of the load cell shows that its design is very suitable and applicable for the dynamic test and on-line test. After the test and evaluation of load cell's dynamic calibration with pantograph, we will be applied to test interaction characteristics between the pantograph and catenary system on the high-speed line.

  • PDF

Discussion of the relationship between adhesion force and braking force in slip condition (제동시 점착력과 제동력의 관계에 대한 고찰)

  • Kim, Young-Guk;Kim, Seog-Won;Mok, Jin-Yong;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1005-1011
    • /
    • 2007
  • The brake system of train must posses the large braking effort in order to stop the train safely within the limited traveling distance. But, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid, because the applied braking force exceeds the allowable adhesive force. This skid causes not only to increase the stopping distance but also to deteriorate the safety of train and damage the rail surface by wheel flat. In the present paper, the braking force for disc brake of Korea High Speed Train (HSR350x) was measured through on-line test and the adhesion force was estimated by using the analytic model in the skid condition. Also, we have discussed the relationship between the actual disc brake force and the adhesion force in real skid condition.

  • PDF

study on twist forming of elements for tube type line mixers (튜브형 line mixer용 element의 비틀음 성형에 대한 연구)

  • 김권희
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • the process of strip twisting is practiced for the manufacture of some commercial parts such as elements for tube type line mixers. A thin metal strip with rectangular cross section is twisted thru an angle greater than 180。. Initial geometry is altered in to a complex one with dimen-sional changes. In practice several tryouts are necessary to obtain required dimensional accu-racies. A simple analysis model is proposed to predict the dimensional changes forming torque and axial force.

  • PDF

A Study on the Modeling of a Position Control System with a Pneumatic Cylinder Considering Transfer Characteristics of a Transmission Line (전달 관로의 전달특성을 고려한 공기압 실린더 구동장치의 모델링에 관한 연구)

  • Kang B.S.;Jang J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.20-25
    • /
    • 2004
  • In this study, a position control characteristics of pneumatic cylinder with transmission line is analyzed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing stiles of the fluid the diameter and the length of the line. But, the effect of the change of dynamic characteristics of transmission line by the flowing states on the position control characteristics can be neglected because of the friction force of the pneumatic cylinder. So, We assume that the position control characteristics is affected by the diameter and length of the transmission line. The experimental results according to the change of parameter of the transmission line show that the relation between the parameter of the transmission line and the position control characteristics of pneumatic cylinder driving system with the transmission line.

  • PDF

A Study on Real-time Monitoing of Tool Fracture in Turning (선삭공정시 공구파손의 실시간 검출에 관한 연구)

  • Park, D.K.;Chu, C.N.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.130-143
    • /
    • 1995
  • This paper presents a new methodology for on-line tool breadage detection by sensor fusion of an acoustic emission (AE) sensor and a built-in force sensor. A built-in piezoelectric force sensor, instead of a tool dynamometer, was used to measure the cutting force without altering the machine tool dynamics. The sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. A burst of AE signal was used as a triggering signal to inspect the cutting force. A sighificant drop of cutting force was utilized to detect tool breakage. The algorithm was implemented on a DSP board for in-process tool breakage detection. Experiental works showed an excellent monitoring capability of the proposed tool breakage detection system.

  • PDF

Comparison of Strain on Dental Cervical Line between Tooth Fracture Test and Finite Element Analysis (치아파절시험과 유한요소해석에서의 치경 변형률에 관한 연구)

  • Yoo, Oui-Sik;Chun, Keyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.87-94
    • /
    • 2010
  • When occlusal force is applied to a tooth, stress concentration occurs on the dental cervical line. This study investigated to find the maximum force and strain of natural teeth using an Instron and strain gauges, comparing the strain of cervical enamel using finite element analysis(FEA). Tests were conducted with a mandibular first premolar applying the conditions of occlusion. Then, the FEA was processed with the same as conditions of the fracture test. The test showed that the maximum force, maximum compressive strain and maximum tensional strain was $278{\pm}26$ N, $0.668{\times}10^{-3}{\pm}0.678{\times}10^{-3}$ and $0.248{\times}10^{-3}{\pm}0.102{\times}10^{-3}$, respectively. It was found that six of eight measured strains were within the range of estimated strains by the FEA. Even though it was assumed that properties of FE models were isotropic, it could prove useful as a reference in understanding the tendency of dental strain.

Stress Analysis of the Occlusal Force on the Mandibular First Premolar

  • Yoo, Oui-Sik;Chun, Keyoung-Jin;Yoo, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.214-218
    • /
    • 2009
  • The occlusal force of the tooth leads to loss of tooth tissue owing to attrition and abrasion, and may cause abfraction and pathological change of the dentin. Thus, we developed finite element models, examined them by applying ordinary occlusal force, and analyzed the stress distribution. Specimens used were mandibular first premolars from 15 Korean males and 13 females and were made into finite element models from medical images that were obtained using a Micro-CT. We have found that the irregular feature of the tooth is not only useful to masticating and pronouncing as well known, but it is also suitable for protecting inner tissue by dispersing stress and delivering proper pressure to periodontal tissue to continue a physiological action. Also, image analysis could let us know the factor that is the cause of a disorder due to stress concentration in the cervical line. These results are expected to support the field of dental treatment planning, operating procedure and clinical trial, and the advance of technical expertise to develop implants and dentures.

Effect of the circle tunnel on induced force distribution around underground rectangular gallery using theoretical approach, experimental test and particle flow code simulation

  • Vahab, Sarfarazi;Reza, Bahrami;Shadman Mohammadi, Bolbanabad;Fariborz, Matinpoor
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • In this study, the effect of circle tunnel on the force distribution around underground rectangular gallery was investigated using theoretical approach, experimental test and Particle flow code simulation (PFC). Gypsum model with dimension of 1500×1500 mm was built. Tensile strength of material was 1 MPa. Dimension of central gallery was 100 mm×200 mm and diameter of adjacent tunnel in its right side was 20 mm, 40 mm and 60 mm. Horizontal distance between tunnel wall and gallery edge were 25, 50, 75, 100 and 125 mm. using beam theory, the effect of tunnel diameter and distance between tunnel and gallery on the induced force around gallery was analyzed. In the laboratory test, the rate of loading displacement was set to 0.05 millimeter per minute. Also sensitivity analysis has been done. Using PFC2D, interaction between tunnel and gallery was simulated and its results were compared with experimental and theoretical analysis. The results show that the tensile force concentration has maximum value in center of the rectangular space. The tensile force concentration at the right side of the axisymmetric line of gallery has more than its value in the left side of the galleries axisymmetric line. The tensile force concentration was decreased by increasing the distance between tunnel and rectangular space. In whole of the configurations, the angles of micro cracks fluctuated between 75 and 105 degrees, which mean that the variations of tunnel situation have not any influence on the fracture angle.

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF