• 제목/요약/키워드: limiting diffusion

검색결과 101건 처리시간 0.026초

Pd 계열 수소 분리막의 오염에 관한 연구 (A Study on Contamination of Hydrogen Permeable Pd- based Membranes)

  • 한종희;윤성필;남석우;임태훈;홍성안;김진수
    • 한국수소및신에너지학회논문집
    • /
    • 제14권1호
    • /
    • pp.17-23
    • /
    • 2003
  • $H_2$ permeation flux though a $100{\mu}m-thick$ Pd-Ru (6wt%) membrane was measured at various temperatures and pressures. The permeation flux followed the Sievert's law and thus the rate-limiting step of the hydrogen permeation was the bulk atomic diffusion step. The activation energy of the permeation flux was obtained at 17.9 kJ/mol and this value is consistent with those published previously. While no degradation of the permeation flux wasfound in the membrane exposed to the $O_2$ and $CO_2$ environments for 100 hours, the membrane exposed to $N_2$ environment for 100 hours showed the degradation in the $H_2$ permeation flux. The $H_2$ permeation was decreased as the exposure temperature to $N_2$, environment was increased. The $H_2$ permeation flux was fully recovered after the membrane was kept in the $H_2$ environment for certain time. The permeation flux degradation might be caused by the formation of metal nitride on the membrane surface.

Production of Sulfuric Acid and Ammonia Water from Ammonium Sulfate Using Electrodialysis with Bipolar Membrane and Ammonia Stripping

  • Yeon Kyeong-Ho;Song Jung-Hoon;Shim Bong-Sup;Moon Seung-Hyeon
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.28-33
    • /
    • 2005
  • The feasibility of producing sulfuric acid and ammonia water from ammonium sulfate was investigated by an integrated process including ammonia stripping (AS) and electrodialysis with bipolar membrane (EDBM). It was suggested that the production of sulfuric acid using ammonia stripping-electrodialysis with bipolar membrane (ASEDBM) was effective in obtaining high concentration of sulfuric acid compared with EDBM alone. AS was carried out over pH 11 and within the range of temperatures, $20^{\circ}C{\~}60^{\circ}C$. Sodium sulfate obtained using AS was used as the feed solution of EDBM. The recovery of ammonia increased from $40\%$ to $80\%$ at $60^{\circ}C$ due to the increased mobility of ammonium ion. A pilot-scale EDBM system, which is composed of two compartments and 10 cell pairs with an effective membrane area of $200 cm^2$ per cell, was used for the recovery of sulfuric acid. The performance was examined in the range of 0.1 M${\~}$1.0 M concentration of concentrate compartment and of $25 mA/cm^2{\~}62.5 mA/cm^2$ of current density. The maximum current efficiency of $64.9\%$ was obtained at 0.1 M sulfuric acid because the diffusion rate at the anion exchange membrane decreased as the sulfuric acid of the concentrate compartment decreased. It was possible to obtain the 2.5 M of sulfuric acid in the $62.5 mA/cm^2$ with a power consumption of 13.0 kWh/ton, while the concentration of sulfuric acid was proportional to the current density below the limiting current density (LCD). Thus, the integrating process of AS-EDBM enables to recover sulfuric acid from the wastewaters containing ammonium sulfate.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Forward-Mode $Na^+-Ca^{2+}$ Exchange during Depolarization in the Rat Ventricular Myocytes with High EGTA

  • Kim, Eun-Gi;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.487-494
    • /
    • 2001
  • During depolarization, extrusion of $Ca^{2+}$ from sarcoplasmic reticulum through forward-mode $Na^+-Ca^{2+}$ exchange was studied in the rat ventricular myocytes patch-clamped in whole-cell configuration. In order to confine the $Ca^{2+}$ responses in a micro-domain by limiting the $Ca^{2+}$ diffusion time, rat ventricular myocytes were dialyzed with high (14 mM) EGTA. $K^+$ current was suppressed by substituting KCl with 105 mM CsCl and 20 mM TEA in the pipette filling solution and by omitting KCl in the external Tyrode solution. $Cl^-$ current was suppressed by adding 0.1 mM DIDS in the external Tyrode solution. During stimulation roughly mimicking action potential, the initial outward current was converted into inward current, $47{\pm}1%$ of which was suppressed by 0.1 mM $CdCl_2.$ 10 mM caffeine increased the remaining inward current after $CdCl_2$ in a cAMP-dependent manner. This caffeine-induced inward current was blocked by $1\;{\mu}M$ ryanodine, $10\;{\mu}M$ thapsigargin, 5 mM $NiCl_2,$ or by $Na^+\;and\;Ca^{2+}$ omission, but not by $0.1\;{\mu}M$ isoproterenol. The $I{\sim}V$ relationship of the caffeine-induced current elicited inward current from -45 mV to +3 mV with the peak at -25 mV. Taken together, it is concluded that, during activation of the rat ventricular myocyte, forward-mode $Na^+-Ca^{2+}$ exchange extrudes a fraction of $Ca^{2+}$ released from sarcoplasmic reticulum mainly by voltage-sensitive release mechanism in a micro-domain in the t-tubule, which is functionally separable from global $Ca^{2+}{_i}$ by EGTA.

  • PDF

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

$SF_6$+Ar 혼합기체의 전리 및 부착계수에 관한 연구 (The Study on the Electron ionization and Attachment Coefficients in $SF_6$+Ar Mixtures Gas)

  • 김상남;하성철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.591-593
    • /
    • 2000
  • In this paper, we describe the results of a combined experimental theoretical study designed to understand and predict the dielectric properties of SF$_{6}$ and SF$_{6}$+Ar mixtures. The electron transport, ionization, and attachment coefficients for pure SF$_{6}$ and gas mixtures containing SF$_{6}$ has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] SF$_{6}$+Ar mixtures were measured by time- of- flight method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with the experimental and theoretical for a rang of E/N values. Electron energy distribution functions computed from numerical solutions of the electron transport and reaction coefficients as functions of E/N. We have calculated $\alpha$,η and $\alpha$-η the ionization, attachment coefficients, effective ionization coefficients, and (E/N), the limiting breakdown electric-field to gas density ratio, in SF$_{6}$ and SF$_{6}$+Ar mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of theections of the

  • PDF

클렌부테롤 경피흡수제제의 개발 (Development of Transdermal Delivery Systems Containing Clenbuterol)

  • 최한곤;권기철;정시영;이종달;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권4호
    • /
    • pp.247-252
    • /
    • 2000
  • The advantages of transdermal administration are avoiding hepatic first pass effect, minimizing inter- and intra-patient variation, maintaining steady-state plasma level to provide long-term therapy from a single dose, and allowing a rapid termination of drug input. Clenbuterol, a selective ${\beta}_2-adrenergic$ receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease. For the development of transdermal systems containing clenbuterol, two limiting factors - long lag time and low flux - must be overcome. In this study, we attempted to select optimal formulation for preparation of clenbuterol patch using hairless mouse skin and flow-through diffusion cell. The flux of clenbuterol increased as the percent of clenbuterol dose dependently in the concentration range of 5-15%. Based on this result, we fixed the concentration of clenbuterol as 15%. The effect of various penetration enhancers on percutaneous absorption of clenbuterol through hairless mouse skin was investigated. Labrafil was the most effective enhancer, which increased the permeability of clenbuterol approximately 4-fold compared with the control without penetration enhancer. Optimal enhancer concentration was 3%. The effect of various adhesives on penetration of clenbuterol was also investigated. Among the adhesives studied, MA-31 was the most effective adhesive. Furthermore, the clenbuterol patch composed of 15% clenbuterol, 3% Labrafil and 82% MA-31, which gave most excellent penetration of drug in in vitro penetration study, maintained therapeutic plasma levels in in vivo study using S.D. rats. These studies demonstrated a good feasibility of clenbuterol administration through the intact skin using a transdermal patch, and show a possibility of the development of clenbuterol patches.

  • PDF

Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques

  • Chaudhary, Narendra;Im, Jae-Kyeong;Nho, Si-Hyeong;Kim, Hajin
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.627-636
    • /
    • 2021
  • The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.

지중 환경하에서의 철근콘크리트 구조물의 부식 특성 연구 (A Study on Corrosion Properties of Reinforced Concrete Structures in Subsurface Environment)

  • 권기정;정해룡;박주완
    • 지질공학
    • /
    • 제26권1호
    • /
    • pp.79-85
    • /
    • 2016
  • 방사성폐기물 처분시설 공학적방벽을 구성하는 콘크리트는 주변 환경의 영향으로 내구 수명에 영향을 받게 된다. 현재까지 개발된 수치해석 모델 및 실험을 통하여 방사성폐기물 처분시설 공학적방벽 소재로 가장 널리 사용되는 콘크리트에 대해 주변환경을 고려하여 그 영향을 살펴보았다. 본 연구에 해당하는 철근 콘크리트 구조물은 지리적으로 해안과 인접한 지하수 포화대에 위치하고 있다. 일반적인 철근콘크리트 구조물의 가장 민감한 열화인자인 염해에 의한 철근부식에 대한 영향을 염화물 확산모델을 이용하여 평가한 결과 철근 부식 개시기간이 1,284년이며, 최종적으로 구조물이 내구수명을 상실하는데 도달하는 시간은 1,924년인 것으로 예측되었다. 또한, Mock-up 실험을 통해 공극분포, 공극률, 부식정도 등 물리화학적 특성을 평가한 결과 콘크리트 내 철근 부식정도는 미비한 것으로 나타나 500년 이상의 상당히 오랜 기간 건전성을 유지할 수 있는 것으로 판단된다.

아세클로페낙의 경피 제제설계 및 피부투과 특성 (Formulation and Skin Penetration Characteristics of Aceclofenac Plaster for Transdermal Delivery)

  • 정종근;이민석;박정화;이장원;김하형;최영욱;이광표
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권1호
    • /
    • pp.29-36
    • /
    • 1999
  • Aceclofenac is an non-steroidal antiinflammatory drug which has been used in the treatment of rheumatoidal rthritis and osteo-arthritis. In order to decrease the gastric ulcerogenic effects and contol the plasma level of aceclofenac, we have developed the transdermal delivery system of aceclofenac plaster, which were formulated employing matrix polymers of acrylates and penetration-enhancers such as $Lauroglycol^{\circledR}$, $Transcutol^{\circledR}$, oleic acid and linoleic acid. Using Franz diffusion cells mounted with a rat skin, transdermal penetration characteristics of the formulations were evaluated by the HPLC assay of aceclofenac and diclofenac, an active metabolite, in the receptor compartment of pH 7.2 phosphate buffered solution. Skin penetration was increased when the content of aceclofenac increased, showing the flux $(J,\;{\mu}g/cm^2/hr)$ of 0.37 and 2.50 for 2% and 6.75% of the content, respectively. The flux$(J,\;{\mu}g/cm^2/hr)$ from plasters made of $Durotak^{\circledR}$ 87-2074, $Durotak^{\circledR}$ 87-2510 and $Durotak^{\circledR}$ 87-2097 were 2.50, 2.77 and 4.39, respectively. $Durotak^{\circledR}$ 87-2074 showed the lowest penetration due to the carboxylic acid group in the polymer, which might form a strong hydrogen bonding with a secondary amine of aceclofenac. Although both $Durotak^{\circledR}$ 87-2510 and $Durotak^{\circledR}$ 87-2097 are amine-resistant adhesives, $Durotak^{\circledR}$ 872510 showed lower penetration than $Durotak^{\circledR}$ 87-2097 because of the hydroxyl group in $Durotak^{\circledR}$ 87-2510, which might form a weak hydrogen bonding with aceclofenac. These results reveal that the functional group in acrylic polymers would greatly affect the release of aceclofenac from the matrix, which is the rate-limiting step in the penetration of aceclofenac through rat skins. The penetration of aceclofenac from plasters using different penetration-enhancers increased in the following order: Transcutol < linoleic acid < oleic acid. And the flux from the plasters containing oleic acid as a penetrationenhancer was 2.22 times greater than that of creams, which suggest that a newly deveolped aceclofenac plaster could be used in the treatment of rheumatoidal arthritis and osteo-arthritis as an advanced transdermal delivery system.

  • PDF