• Title/Summary/Keyword: limited Feedback precoding

Search Result 23, Processing Time 0.021 seconds

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

Preceding Scheme for Dual Spatial Multiplexing Systems with Limited Feedback (제한된 피드백 정보를 이용하는 이중 공간 다중화 시스템의 Preceding 기법)

  • Lee, Myoung-Won;Mun, Cheol;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1224-1230
    • /
    • 2006
  • In this paper, for spatial multiplexing with limited feedback, a precoding scheme is proposed based on the joint use of minimal instantaneous feedback and long-term feedback of a small number of bits, wherein the long-term feedback is used to convey a selected preceding matrix within a precodercodebook consisting of a number of unitary matrices, and the active column vectors of the selected unitary matrix are conveyed to the transmitter using instantaneous feedback. Focusing on the case of dual multi-input multi-output(MIMO) systems, precoder codebook design for maximizing the average throughput of a spatial multiplexing system with a zero-forcing(ZF) receiver is proposed. It is shown that the proposed scheme provides a considerable throughput enhancement over multi-mode antenna selection and multi-mode basis selection only with the additional long-yterm feedback of a small number of bits. For example, the throughput increases by 11.5 % than antenna selection and 5.1% than basis selection, respectively, when SNR=20 dB.

The Optimal Number of Transmit Antennas Maximizing Energy Efficiency in Multi-user Massive MIMO Downlink System with MRT Precoding (MU-MIMO 하향링크 시스템에서의 MRT 기법 사용 시 에너지 효율을 최대화하는 최적 송신 안테나의 수)

  • Lee, Jeongsu;Han, Yonggue;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.33-39
    • /
    • 2014
  • We propose an optimal number of transmit antennas which maximizes energy-efficiency (EE) in multi-user massive multiple-input multiple-output (MIMO) downlink system with the maximal ratio transmission (MRT) precoding. With full channel state information at the transmitter (CSIT), we find a closed form solution by partial differential function with proper approximations using average channel gain, independence of individual channels, and average path loss. With limited feedback, we get a solution numerically by the bisection with approximations in the same manner, and analyze an effect of feedback bits on the optimal number of transmit antennas. Simulation results show that the optimal numbers of transmit antenna getting from proposed closed form solution and exhaustive search are nearly same.

Capacity Maximizing Adaptive Subcarrier Selection in OFDM with Limited Feedback (OFDM 용량 극대화를 위한 적응 부 반송파 선택에 관한 연구)

  • Mun Cheol;Jung Chang-Kyoo;Park DongHee;Kwak Yoonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.905-911
    • /
    • 2005
  • We propose an efficient adaptive subcarrier selection scheme, in which the active subcarriers and their modulation and coding schemes (MCSs) are selected at the receiver, and subsequently conveyed to the transmitter using limited feedback We theoretically show that capacity maximization can be achieved by selecting subcarriers with highest signal-to-noise ratios (SNRs) and adapting the number of active subcarriers according to channel environments. Furthermore, an ordering based adaptive subcarrier selection algorithm is proposed to select the optimal active subcarriers with low complexity. Numerical results show that the proposed adaptive subcarrier selection scheme provides higher capacity than that obtained by water-filling approaches, even with limited feedback.

Limited Feedback Precoding for Correlated Massive MIMO Systems (공간 상관도를 가지는 거대배열 다중안테나 시스템에서 압축채널 제한적 피드백 알고리즘)

  • Lim, Yeon-Geun;Chae, Chan-Byoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, we propose a compressive sensing-based channel quantization feedback mechanism that is appropriate for practical massvie multiple-input multiple-output (MIMO) systems. We assume that the base station (BS) has a compact uniform square array that has a highly correlated channel. To serve multiple users, the BS uses a zero-forcing precoder. Our proposed channel feedback algorithm can reduce the feedback overhead as well as a codebook search complexity. Numerical simulations confirm our analytical results.

Efficient Near-Optimal Detection with Generalized Sphere Decoder for Blind MU-MIMO Systems

  • Kim, Minjoon;Park, Jangyong;Kim, Hyunsub;Kim, Jaeseok
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.682-685
    • /
    • 2014
  • In this letter, we propose an efficient near-optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi-user multiple-input multiple-output (MU-MIMO) systems. In practical MU-MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near-optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.

Codebook Design and Centralized Scheduling for Joint Transmission SDMA with Limited Feedback (제한된 피드백을 사용하는 결합 전송 공간 분할 다중 접속 기술을 위한 코드북 설계와 집중 스케줄링)

  • Mun, Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1180-1187
    • /
    • 2012
  • In this paper, joint transmission space division multiple access(JT-SDMA) scheme is proposed to mitigate inter-cell interference(ICI) in cooperative wireless communications system with limited feedback. We propose a systematic design method for a codebook consisting of a finite number of unitary matrices suitable for network multiple-input multiple-output( MIMO) channel characteristics. A centralized cluster scheduling scheme is proposed to both mitigate ICI and maximizes multiuser diversity gain with limited feedback. It is shown that the proposed JT-SDMA scheme outperforms a existing coordinated SDMA scheme even in wireless network environments where sufficient multiuser diversity order can not be provided through efficient ICI mitigation.

Unitary precoding space time block coding with limited feedback (폐-루프 다중안테나시스템에서 제한된 피드백을 이용한 시공간블록부호기술의 적용)

  • Kim, Jeong-Mi;Oh, Dong-Jin;Kim, Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.85-88
    • /
    • 2005
  • Space-time code is a good solution to get transmit diversity. During the last years a number of space-time block codes have been proposed for use in multiple transmit antenna systems. This code, however, was presented only for the special case of the certain numbers of transmit antennas and the certain modulation schemes. and designed under the assumption that the transmitter has no knowledge about the channel. In this work, on the other hand, we consider the case when the transmitter has partial, but not perfect knowledge about the channel. This system can have full diversity for arbitrary number of the transmit antennas with a little bits of feedback.

  • PDF

Spectrum Sharing SDMA with Limited Feedback: Throughput Analysis

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3237-3256
    • /
    • 2012
  • In the context of effective usage of a scarce spectrum resource, emerging wireless communication standards will demand spectrum sharing with existing systems as well as multiple access with higher spectral efficiency. We mathematically analyze the sum throughput of a spectrum sharing space-division multiple access (SDMA) system, which forms a transmit null in the direction of other coexisting systems while satisfying orthogonal beamforming constraints. For a large number of users N, the SDMA throughput scales as log N at high signal-to-noise ratio (SNR) ((J-1) loglog N at normal SNR), where J is the number of transmit antennas. This indicates that multiplexing gain of the spectrum sharing SDMA is $\frac{J-1}{J}$ times less than that of the non-spectrum sharing SDMA only using orthogonal beamforming, whereas no loss in multiuser diversity gain. Although the spectrum sharing SDMA always has lower throughput compared to the non-spectrum sharing SDMA in the non-coexistence scenario, it offers an intriguing opportunity to reuse spectrum already allocated to other coexisting systems.

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho Yoon;Woncheol Cho;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.925-935
    • /
    • 2022
  • In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.