• Title/Summary/Keyword: limit analysis method

Search Result 2,337, Processing Time 0.035 seconds

A Study on the Analysis of Overload of a Two-Span Continuous Bridige (2경간 연속교의 과재하중 해석방법에 관한 연구)

  • 한상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 1993
  • Residual Deformation Analysis(RDA) is a new method for ratings of the continuous bridges. The RDA makes it possible to expand the inelastic steel girder bridge design method set forth in the American Association of State Highway Officals'(AASHTO) Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections(1986) into an inelastic rating method. It is a method to assess the residual moments and deformations that are set up in a beam that has been loaded into the post-elastic range This method combines classical elastic conjugate beam theory with linear moment-rotation relationships for midspan inelastic positive moment. The limit state is inelastic serviceability limit. which is defined as the ratio of the span to midspan inelastic deflection(C=L/D).

  • PDF

Reliability-Based Assessment of Structural Safety of Regid-Frame-Typed Segmental PSC Box Girder Bridges Erected by the FCM during Construction (FCM에 의한 라멘식 세그멘탈 PSC박스거더 교량의 신뢰성에 기초한 시공간 구조안전도평가)

  • Cho, Hyo-Nam;Joo., Hwan-Joong;Park, Kyung-Hoon;Moon, Kyung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.131-140
    • /
    • 2002
  • In this paper, a limit state model based on the analysis of structural behavior of segmental prestressed concrete box girder bridges and reliability-based safety assessment method are proposed for the bridges erected by free cantilever method. Strength limit state models for prestressed concrete box girder and rigid-frame type columns are developed for a structural safety assessment during construction. Based on the proposed limit state models, the reliability of the bridge is evaluated by using the Advanced First Order Second Moment method. The proposed model and method are applied to the Seo-Hae Grand Bridge built by FCM in order to verify its effectiveness in the safety assessment during construction of the kind of bridges. The sensitivity analyses of the main parameters are also performed in order to identify the important factors that need to be controlled for the safety of the bridges during construction.

Finite Element Limit Analysis of a Nuclear Reactor Lower Head Considering Thermal Softening in Severe Accident (중대사고에서의 열적 연화를 고려한 원자로 하부구조의 유한요소 극한해석)

  • Kim, Kee-Poong;Huh, Hoon;Park, Jae-Hong;Lee, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.782-787
    • /
    • 2001
  • This paper is concerned with the global rupture of a nuclear reactor pressure vessel(RPV) in a severe accident. During the severe reactor accident of molten core, the temperature and the pressure in the nuclear reactor rise to a certain level depending on the initial and subsequent condition of a severe accident. While the rise of the temperature cause the thermal softening of RPV material, the rise of the internal pressure could cause failure of the RPV lower head. The global rupture of an RPV is simulated by finite element limit analysis for the collapse pressure and mode and this analysis results have been compared with a variation of the internal pressure of RPV. The finite element limit method is a systematic tool to secure the safety criteria of a nuclear reactor and to evaluate the in-vessel corium retention.

  • PDF

High Performance Liquid Chromatographic Method for Determination of Metazosulfuron Residue in Representative Crops

  • Lee, Hyeri;Kim, Eunhye;Lee, Young Deuk;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • BACKGROUND: This study was performed to develop a single residue analytical method for new herbicide metazosulfuron in crops. METHODS AND RESULTS: Brown rice, apple, mandarin, Kimchi cabbage and soybean were selected as representative crops, and clean-up system, partition solvent and extraction solvent were optimized. Instrumental limit of quantitation (ILOQ), linearity of calibration curve and method limit of quantitation (MLOQ) were determined based on the chromatography and whole procedures. For recovery tests, brown rice, apple, mandarin, Kimchi cabbage and soybean samples were macerated and fortified with metazosulfuron standard solution at three levels (MLOQ, 10 MLOQ and 100 MLOQ). And then those were extracted with acetonitrile, concentrated, and partitioned with ethyl acetate. Then the extracts were concentrated again and cleaned-up through $NH_2$ (aminopropyl) SPE cartridge with acetone : dichloromethane (1% acetic acid) (20 : 80, v/v) before concentration and analysis with HPLC. CONCLUSION(S): ILOQ of metazosulfuron was 2 ng (S/N${\geq}$10) and good linearity was achieved between 0.05 and 12.5 mg/Kg of metazosulfuron standard solutions, with coefficients of determination of 0.9999. MLOQ was 0.02 mg/Kg. Good recoveries from 74.1 to 116.9% with coefficients of variation (C.V.) of less than 10% were obtained, regardless of sample type, which satisfies the criteria of Korea Food and Drug Administration (KFDA). Those results were reconfirmed with LC-MS (SIM). The method established in this study is simple, economic and efficient to be applied to most of crops as an official and general method for residue analysis of metazosulfuron.

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

Analysis on the Geo-reinforced Slope Using Upper Bound Theory (상계해석을 이용한 보강토 사면의 해석)

  • Choi Sang-Ho;Kim Jong-Min;Yu Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.207-215
    • /
    • 2004
  • In this study, the upper bound theory is applied to a reinforced slope to develop an limit state analysis method. As processing of this upper bound theory in formulating finite element, the basic idea of numerical method can be obtained from a macroscopic point of view with an anisotropic homogeneous material. The reinforced soil strength reliability depends on properties of reinforcements which consist of the interaction of interfaces between back fill and reinforcements. Both soil's mechanical property and overall behaviour of reinforced soil can be controlled via arranging geometry and relative proportions of reinforced soil. Therefore, the upper bound theory can not only predict the particular limit state action of reinforced soil slope but also is efficiently able to estimate the local plastic failure.

Homogenized limit analysis of masonry structures with random input properties: polynomial Response Surface approximation and Monte Carlo simulations

  • Milani, G.;Benasciutti, D.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.417-447
    • /
    • 2010
  • The uncertainty often observed in experimental strengths of masonry constituents makes critical the selection of the appropriate inputs in finite element analysis of complex masonry buildings, as well as requires modelling the building ultimate load as a random variable. On the other hand, the utilization of expensive Monte Carlo simulations to estimate collapse load probability distributions may become computationally impractical when a single analysis of a complex building requires hours of computer calculations. To reduce the computational cost of Monte Carlo simulations, direct computer calculations can be replaced with inexpensive Response Surface (RS) models. This work investigates the use of RS models in Monte Carlo analysis of complex masonry buildings with random input parameters. The accuracy of the estimated RS models, as well as the good estimations of the collapse load cumulative distributions obtained via polynomial RS models, show how the proposed approach could be a useful tool in problems of technical interest.

Reliability analysis of latticed steel towers against wind induced displacement

  • Khan, M.A.;Siddiqui, N.A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.9-21
    • /
    • 2004
  • The present study aims at the reliability analysis of steel towers against the limit state of deflection. For this purpose tip deflection of the tower has been obtained after carrying out the dynamic analysis of the tower using modal method. This tip deflection is employed for subsequent reliability analysis. A limit state function based on serviceability criterion of deflection is derived in terms of random variables. A complete procedure of reliability computation is then presented. To study the influence of various random variables on tower reliability, sensitivity analysis has been carried out. Design points, important for probabilistic design of towers, are also located on the failure surface. Some parametric studies have also been included to obtain the results of academic and field interest.

Analysis of Rock Slope Stability Based on Fuzzy Approximate Reasoning (퍼지근사추론법에 의한 암반사면의 안정해석)

  • 기완서;김삼석;주승완
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.153-161
    • /
    • 2001
  • The quantitative evaluation of the stereo graphic projection, the limit equilibrium analysis, the finite difference analysis, the distinct element methocI is a analytical evaluation using many variables. Through the reliability analysis by the point estimation technique, uncertainty of other variables that have an effect on the stability of the rock slo~ was considered. The organized evaluation method of the approximate reasoning concept and using a fuzzy language was developed to confer and analysis the failure factors in planning and constructing the rock slope. Considering the result of the an- alysis, it was demonstrated that stability of entire sections can be evaluated through reliability analysis of point estimation technique. The results of stability evaluation by Fuzzy Approximate Reasoning is generally identical with the results of other existirw; analyses. As mentioned above, general and organized evaluation of special qualities of rock slope is possible using RMR Classification, Stereo Graphic Projection, Limit Equilibriwn Analysis, Finite Difference Analysis, Distinct Element Method, Point Estimation Technique, and Fuzzy Approximate Reasoning.

  • PDF

Reliability Analysis of Pile Type Quaywall Using Response Surface Method (응답면 기법을 이용한 잔교식 안벽의 신뢰성 해석)

  • Lee, Sang-Geun;Kim, Dong-Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.407-413
    • /
    • 2011
  • Reliability analysis of pile type quaywalls were done by using response surface method. Pier structures have implicit form of limit state function since they are flexible in motion, which is different from gravity type quaywalls. To solve a reliability analysis problem with implicit limit state function, response surface method was applied. Reliability indices of structure under seismic load were found for pier structures Then, they were compared with those found by simulation method. In numerical analysis, both the inclined type and vertical type were analyzed.