• Title/Summary/Keyword: limestone mines

Search Result 64, Processing Time 0.023 seconds

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

Critical review of RMR and Q-system of rockmass classification for the design of underground openings

  • Rao, Karanam U M;Choon, Sun-Woo;Chung, So-Keul;Choi, Sung-O
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.04a
    • /
    • pp.219-229
    • /
    • 2004
  • In this article a comprehensive review of the Rock Mass Rating and Q-rockmass classification systems is made with reference to their scope with in the constraints of underground mining operations. The modifications suggested by KIGAM for both the RMR and Q for the calculation of a safe unsupported span were tested for Daesung and Pyunghae underground limestone mines. Even though the suggested modifications were site specific, the additional parameters considered in the above classification systems are very significant for a design of stable underground openings, considering any general mining conditions.

  • PDF

Status of Mineral Resources and Mining Development in North Korea (북한 광물자원 부존 및 개발현황 개요)

  • Koh, Sang Mo;Lee, Gill Jae;Yoon, Edward
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.291-300
    • /
    • 2013
  • The potential mineral resources in North Korea are magnesite, limestone, coal, graphite, iron, gold, silver, lead, and zinc. North Korea is mainly exporting coal and iron to China(70%) and EU countries. Gold ore reserves(or resources) in North Korea are about 2,000 tons and annual production is 2 tons based on metal. Major gold mines are Sooan, Holdong, and Daeyoodong mines and six smelters are operating. Fe ore reserves (or resources) are 4.3 billion tons and annual production is about 5 million tons based on 63.5% Fe. Major iron mines are Moosan, Leewon, Eunryul, Shinwon, and Jaeryong and 7 smelters are operating. Pb and Zn ore reserves(or resources) are Pb 470,000 tons and Zn 15 million tons, and annual productions are about Pb 26,000 tons and Zn 50,000 tons based on metal respectively. Major Pb-Zn mines are Gumdock and Seongcheon mines. Magnesite ore reserves(or resources) are 2.8 billion tons (95% MgO) and annual production is about 150,000 tons. Major magnesite mines are Ryongyang, Daeheung Youth and Ssangryong mines, and 5 magnesium refractory factories are operating. Apatite ore reserves(or resources) are 340 million tons(30% $P_2O_5$) and annual production is about 300,000 tons(crude ore). Major apatite mines are Daedaeri, Dongam and Poongnyen mines. Coal is established as an important strategic fuel mineral resources and is a major energy source in North Korea. Coal ore reserves(or resources) are 18.6 billion tons and annual production is about 20 million tons. The main coal fields is located in southern Pyongan and the Jigdong mine is the biggest in North Korea.

Analysis on the Ore Recovery from Operating the Room & Pillar Hybrid Mining Method in the Korean Limestone Mine (국내 석회석 광산에서 주방식하이브리드 채광법의 채수율 분석)

  • Kwon, Dukjoon;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.161-171
    • /
    • 2017
  • Demand for high-grade limestone is increasing, but the production in the domestic mines has been limited due to the lack of systematic development plans and efforts to develop mining technology to improve the recovery ratio, transition to high-cost underground mining due to increasing social awareness of environmental protection, and the smallness of the domestic mining industry, etc. In this study in connection with this issue, an analysis on the recovery change by improvement of mining method was executed. 3D modeling technique was used to construct a 3D model. 3D model includes the geological structure, the limestone ore body and the underground pits and tunnels excavated at the Daepyeong District of Daesung MDI Donghae District. By using the 3D model, measured resources, reserves and ore recovery were evaluated from the results of pilot operation of the room and pillar hybrid mining method, which is a variant of room and pillar mining method. These results were compared with those obtained from the conventional mining method. The ore recovery obtained by hybrid mining method was found to be up to 71.6%, showing about 26%p. increase compared with the case of conventional mining method.

Variations in Geochemical characteristics of the Acid Mine Drainages due to Mineral-Water Interactions in Donghae Mine Area in Taebaek, Korea (태백 동해광인일대의 물-광물의 반응에 의한 산성광산배수의 지구화학적 특성 변화)

  • 김정진;김수진
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • There are several abandoned coal mines around Donghae mine area in the Taebaek coal field. Two major creeks, Soro and Sanae, are contaminated with the colored precipitates formed from the coal mine drainages. Bed rocks of the study area consist of limestone, shale, and sandstone. Limestone consisted mainly of calcite and dolomite, and shale of quartz, pyropyllite and chlorite, and sandstone of quatz and illite. Coal coal spoil dumps composed mainly of pyrite and chlorite. The oxidative dissolution of sulfide minerals leads to acid mine drainage and adds the metal ions in the stream water. The ion concentrations of Fe, Ca, Mg, Al, Si, SO$_{4}$in the stream polluted by AMD are generally higher than those in the unpolluted stream water. High concentrations of Ca and Mg, Al and Si can be resulted from dissolution of carbonate minerals such as calcite, dolomite and aluminosilicates such as chlorite, pyrophyllite. Although the Fe, Al, Si, SO$_{4}$ contents are considerbly high in the acid water released from the mine adits, they become decreased downstream due to dilution of unpolluted water and precipitation of oxide/hydroxide and sulfate minerals on the bottom of stream.

Studies on Geology and Mineral Resources of the Okcheon Belts -Mineralization in the Vicinity of the Muamsa Granite Stock- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -무암사화강암(務岩寺花崗岩) 주위에서의 광화작용(鑛化作用)에 관(關)하여-)

  • Yun, Suckew;Kim, Kyu Han;Woo, Jong Sang
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.3-17
    • /
    • 1986
  • Hundred mineral deposits including W-Mo, Pb-Zn-Cu, fluorite and talc occur in the Cambre-Ordovician limestone contacting with the Cretaceous Muamsa and Wolak granitoids in the Susanri-Hwanggangri mineralized zone. In most mineral deposits characterized by metasomatic replacement, skarn and hydrothermal vein types, two distinct tendencies were found as W-Mo mineralization in or/and near granitoid batholith and ($Pb-Zn-Cu(CaF_2)$) mineralization which is gradually increased toward the batholith. W-Mo veins of extensive vein system occupy northly striking fractures whilst $Pb-Zn-Cu-CaF_2$ veins strike northeast or northwest. In this work, three representative lead-zinc-copper deposits choosing the Dangdu, Useog and Eoksu mines were dealt with in detail. Skarn ore bodies in the Dangdu mine were grouped into early diopside rich clinopyoxene-garnet, barren skarn and ore bearing late hedenbergite rich clinopyroxene-garnet skarn. Temperature and $X_{CO_2}$, obtained from hedenbergite-andradite-calcite-quartz mineral equilibria in the Dangdu ore deposits were $580{\sim}650^{\circ}C$ and 0.15~0.3, respectively. Fluid inclusien evidence in the Useog mine indicates that main stage mineralization temperature ranges from 224 to $389^{\circ}C$ with a salinity of 2~17 equivalent wt. percent NaCl. Sphalerites from the Dangdu and Useog mines have 16~17.7 mole percent in FeS which is relatively consistent to those of some other lend-zinc ore deposits in South Korea. Filling tcmjCerature of fluid inclusion frem the Eoksu mine shows deposition of ore within the temperature ranges from 237 to $347^{\circ}C$ and within the salinity ranges from 2.6 to 10.77 equivalent wt. percent NaCl.

  • PDF

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

Treatment of Acid Mine Drainage Using Immobilized Beads Carrying Sulfate Reducing Bacteria (황산염환원균 고정화 담체를 이용한 산성광산배수 처리)

  • Kim, Gyoung-Man;Hur, Won;Baek, Hwan-Jo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • The application of constructed subsurface-flow wetlands for treatment of wastewater from abandoned mines is being increased. Crushed limestone, oak chips, and mushroom composites are often employed in a bulk form, as the substrates in the bed media. Efficiency of the subsurface-flow treatment system drops with time as the hydraulic conductivity of the wetland soil decreases significantly, presumably due to chemical reactions with the wastewater. The purpose of this study is to investigate the applicability of immobilized beads carrying sulfate reducing bacteria for acid mine drainage treatment system. The ingredients of immobilized beads are organic materials such as mushroom composite and oak chips, limestone powder for a pH buffer, mixed with a modified Coleville Synthetic Brine. It was found that immobilized beads are more efficient than the bulk form for pH recovery, sulfate and heavy metal removal.

Numerical Study for Prediction of Rock Falls Around Jointed Limestone Underground Opening due to Blast Vibration (발파진동에 의한 절리암반 지하공동의 낙석발생 예측에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.10-16
    • /
    • 2016
  • Recently, transition from open pit to underground mining in limestone mines is an increasing trend in Korea due to environmental issues such as noise, dust and vibrations caused by crushers and equipment. The severe damages in the surrounding rock mass of underground opening caused by explosive blasting may lead to rock fall hazards or casualties. It is well known that variables which mainly affect blast-induced rock falls in underground mining are: blast vibration level, joint orientation and distribution and shape of the cross sections of underground structures. In this study, UDEC program, which is a DEM code, is used to simulate blast vibration-induced rock fall in underground openings. Variation of joint space, joint angle and joint normal stiffness was considered to investigate the effect of joint characteristics on the blast vibration-induced rock fall in underground opening. Finally, jointed rock mass models considering blast-induced damage zone were examined to simulate the critical blast vibration value which may cause rock falls in underground opening.