• Title/Summary/Keyword: limestone area

Search Result 283, Processing Time 0.031 seconds

Lithological Characteristics and Provenance Consideration on the Jade Investiture Books of Joseon Dynasty in National Palace Museum of Korea (국립고궁박물관 소장 조선왕조 옥책의 암석학적 특징과 산지검토)

  • Lee, Chan Hee;Park, Jun Hyoung
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.485-497
    • /
    • 2019
  • The Jade Investiture Books in Joseon Dynasty shows diverse facies with various petrographic characteristics to green and white based on color. In lithologically, the green rocks are jade composed of calcite and serpentine, and the white ones are marbles consisting mainly in crystalline calcite. As a result of X-ray diffraction of jade rocks, the more green in color, the more increased intensity of serpentine appears. Therefore, the grade of jade is correlated with contents of serpentine. The Jade Investiture Books owned by the National Palace Museum of Korea are subdivided with 104 (41.3%) books made by only jade rocks, 98 (38.9%) books made by only marbles, and 50 (19.8%) books mixed with jade rocks and marbles. Among the mixed ones, 47 (18.6%) books consisted mainly of the marbles. This result shows the superior marble books occupy more than half of the total books. The Jade Investiture Books made in early Joseon Dynasty are composed of high grade jade. However, the grade of jade had decreased as the kings changed in process of time, and the composition of marble had increased in reverse proportion of jade. The quality of letter pigments, metal accessories and fabrics also had decreased with jade. These trends are reflected in the aspect of society such as weakening royal authority, national power and finance with the course of time. The jade of the books has different mineralogical characteristics from some modern jade produced in Chuncheon nephrite and Buyeo precious serpentine in Korea. Meanwhile, there is ancient literature that described quarries from Namyang in Hwaseong of Gyeonggi province. This area has a wide distribution of gneiss, limestone and limesilicate rocks are interbedded between muscovite schist. The limesilicate rocks contain diopside, which produced serpentine through alteration. It has possibility to make the Jade Investiture Books using these small amounts of jade through mining activity.

Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit (우석광상 다금속 광화작용의 시공간적 특성변화)

  • Im, Heonkyung;Shin, Dongbok;Jeong, Junyeong;Lee, Moontaek
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.493-507
    • /
    • 2018
  • The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.

Geology and Mineralization of the Iscaycruz Pb-Zn-Cu Project, Central Peru (페루 중부 이스카이크루즈 연-아연-동 프로젝트의 지질 및 광화작용)

  • Heo, Chul-Ho;Nam, Hyeong-Tae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • The geology of the Iskaycruz project are mainly composed of sedimentary rocks within Cretaceous basin. The basal part is composed up of dark-gray shale, gray sandstone, and clastic rock of Oyon formation interbedded with coal measures. In the folded zone in the eastern part of the survey area, there is Chimu formation that has medium-grained massive and white quarztite. In terms of geological structure, the Iskaykruz region is located in the folded and overthrust zones of the central part of the Occidental Mountains. Ore body was formed by hydrothermal replacement process and consists of zinc, lead, silver, and copper. Stratabound-type deposits are hosted in limestone of Santa formation. It extends 12 kilometers discontinuously from northern Canaypata to southern Antapampa. Irregular iron oxide and sulfide minerals hosted in Santa and Parihuanca formations are observed. The mineralization observed on the surface consist of primary sulfides consisting of sphalerite with galena and chalcopyrite, and iron and manganese oxide produced from oxidation of primary sulfides. Skarn minerals are accompanied by tremolite, garnet, epidote and quartz.

Evaluation of Traffic Vibration Effect for Utilization of Abandoned Mine Openings (휴·폐광산 채굴 공동 활용을 위한 교통 진동 영향 평가)

  • Hyeon-Woo Lee;Seung-Joong Lee;Sung-Oong Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, the effect of repeated traffic vibration on the long-term stability of mine openings is analyzed for re-utilization of abandoned mine galleries. The research mine in this study is an underground limestone mine which is developed by room-and-pillar mining method, and a dynamic numerical analysis is performed assuming that the research mine will be utilized as a logistics warehouse. The actual traffic vibration generated by the mining vehicles is measured directly, and its waveform is used as input data for dynamic numerical analysis, As a results of dynamic numerical analysis, after 20,000 repetitions of traffic vibration, the mine openings is analyzed to be stable, but an increase in the maximum principal stress and an additional area of plastic zone are observed in the analysis section. As shown in the changes of displacement, volumetric strain, and maximum principal stress which are measured at the mine opening walls. It is confirmed that if the repeated traffic vibration is continuously applied, the instability of the mine openings can be increased. Authors expect that the results of this study can be used as a reference for basic study on utilization of abandoned mine.

A Study on the Vegetation Landscape and Management Methods of Buyongdae on Hahoe Village, Andong (안동 하회마을 부용대(芙蓉臺) 일원의 식물상 및 관리방안)

  • Oh, Hyun-Kyung;Rho, Jae-Hyun;Choi, Yung-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • This study investigated flora and vascular plants area around Buyongdae where include optimum view point Okyeonjeongsa and Gyeomamjeongsa in Hahoe Village, Andong. Based on the findings, the aim of results was attempted to suggest the management plan of the vegetation area around Buyongdae which designated UNESCO World cultural heritage and folk village in Korea. The results of the study is as the following. All flora of this site, Buyongdae in Andong, were 301 taxa; 89 families, 217 genera, 251 species, 1 subspecies, 38 varieties and 11 forms. Vegetation of each of areas in site was classified Pinus densiflora as representative forest around Buyongdae, Quercus variabilis forest around Gyeomamjjeongsa and Koelreuteria paniculata forest in river cliff of Buyongdae. The 14 taxa(Polygala tenuifolia, Koelreuteria paniculata, and others) as the rare plants and the 7 taxa(Weigela subsessilis, and others) as endemic species were recorded in the surveyed site among the whole flora. The specific plants which is categorized to degree by the Ministry of Environment appeared as 32 taxa; degree IV was 4 species; Polygala tenuifolia, etc. and degree III was 10 species; Hypodematium glandulosopilosum, Pyrrosia petiolosa, etc. and degree I was 13 species; Hemiptelea davidii, Zizyphus jujuba var. jujuba, etc. Also, the 11 taxa were recorded in limestone area as the chamaephyte; Hypodematium glandulosopilosum, Celtis koraiensis, Siphonostegia chinensis, Artemisia gmelini, and others. The naturalized plants recorded as 25 taxa; Viola arvensis, Erechtites hieracifolia, etc. and invasion of Sicyos angulatus which is ecosystem disturbing plants. The naturalization rate(NR) was 8.3% and the urbanization index(UI) was 7.8% by field survey. For recovery of indigenous to traditional vegetation landscape in Buyongdae, Pinus rigida of upper-growth and Alnus sibirica of middle-growth need thinning. In addition, the site demands both sustainable management through long-term monitering and gradual elimination method for the naturalized plants including Sicyos angulatus where found in Kyumamjeongsa. Particularly, intentional planting for decoration and cultivation around Hwachunseowon, Helianthus tuberosus must be substitute with the native plants. Meanwhile, Polygala tenuifolia is potently demanded preventing habitate, confirming additional habitate, seed securing and preservation of gene resource internally or externally. Koelreuteria paniculata; denoting feature of river cliff, including Hypodematium glandulosopilosum, Siphonostegia chinensis, Zizyphus jujuba var. jujuba, Pyrrosia petiolosa, and Celtis koraiensis, also need an assertive preservation. Futhermore, Wisteria floribunda for. floribunda, located around Galmo rock to Chunggil course, remained by colonizing form, need preservation and observation for a while. Beside that, the information boards are required to educate visiting user about safe regulations on the narrow way in rock hill.

A Geochemical Study on Trace Elements in the Granitic Rocks in relation to Mineralization in the Limestone Area of the Taebaegsan Basin (화강암류중 미량원소와 태백산분지내 석회암지역 광화작용과의 지구화학적 관계)

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.179-196
    • /
    • 1987
  • Various skarn ore deposits of Pb-Zn, Fe-Cu, W-Mo and others are widely distributed in the study area which consists mainly of Cambro Ordovician calcareous rocks. The ore deposits are all in close association with specific types of granitic rocks of mid-late Cretaceous age according to the kinds of ores: Fe-Cu deposit with granodiorite-quartz monzodiorite, Pb-Zn deposit with granite-granodiorite, W-Mo deposit with granite, and Mn deposit with quartz porphyry. The granitic rock of Fe-Cu deposit has lower content in K and higher in Ca than those of Pb-Zn deposits. On the contrary, the granitic rock of W-Mo deposit has much higher content in K and lower in Ca in comparison to those of Pb-Zn deposits. However, the granitic rock of Mn deposit shows similar variation to those of Pb-Zn deposits. Lithophile trace elements of Sr and Rb tend to vary in close relation with major elements of K and Ca, respectively. In good contrast, chalcophile elements of Cu, Pb, Zn, Wand Mo are enriched in the granitic rocks of their ore deposits, and other trace elements of Ni and Co show a trend to vary in relation with Mg, Fe and Cu, which have the same replacement index (0.14) as Ni and Co. Average K/Rb and Ca/Sr ratios of the granitic rocks range nearly within 300~150 and 150~40, respectively, and the distribution pattern of the ratios is different according to the kind of ore deposits: Fe-Cu deposit is plotted toward K-Rb poor region whereas Pb-Zn and W-Mo deposits toward K-Rb rich region. In contrast, Fe-Cu and Fe deposits are plotted toward Ca-Sr rich region whereas Pb-Zn deposit toward Ca-Sr poor region. The variation trend of chemical elements of the mid-late Cretaceous granitic rocks in the study area is similar to that of the Cretaceous granitic rocks in the Gyeongsang Basin. Therefore, this geochemical result may be applicable to determining what kinds of ore deposits a Cretaceous granitic rock is favourable for, and whether it is productive or non-productive for systematic geochemical exploration works.

  • PDF

Interpretation of the Manufacturing Characteristics and the Mineral and Chemical Composition of Neolithic Pottery Excavated from the Jungsandong Site, Yeongjong Island, South Korea (영종도 중산동 신석기시대 토기의 광물 및 화학조성과 제작특성 해석)

  • Lee, Chan Hee;Kim, Ran Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.1
    • /
    • pp.4-31
    • /
    • 2018
  • The Neolithic pottery excavated from the Jungsandong site has been classified into four types of pottery (I: feldspar type, II: mica type, III: talc type and IV: asbestos type) according to their mineral composition. These four types of potteries generally appear to have undergone incomplete firing, while the level of oxidation in the type I pottery objects, which have a relatively higher clay content, was found to be particularly low. The type III objects, which have a high talc content, are judged to have been somewhat slow in removing carbon because they contain saponite belonging to the smectite group. Of the four types of pottery, type IV showed the highest redness and the most uniform characteristics, thus indicating a good level of oxidation. In particular, fixed carbide (C; 33.7 wt.%) with a thickness of about 1mm, and originating from organic substances, was detected inside the walls of the type I pottery, while the deep radial cracks in the outer surfaces of the pottery are thought to have been caused by repeated thermal shocks. Given that all of the pottery except for the type I artifacts are considered to be have been made for storage purposes, those containing talc and tremolite are easy to done liquid storing vessels based on an analysis of their material characteristics. As for the type II relics, which are composed of various minerals and exhibit poor physical properties, they seem to have been used for simple storage purposes. As domestic talc and asbestos mines were concentrated in the areas of Gyeonggi, Gangwon, Chungbuk, and Chungnam, it seems likely that talc and tremolite were produced as contiguous minerals. Considering the distance between the remains in Jungsandong and these mines and their geographical distribution, there is a possibility - albeit somewhat slight - that these mines were developed for the mining of various minerals. Although ultramafic rock masses - such as serpentine capable of generating talc and tremolite - have not been found in the Jungsandong area, limestone and biotite granite containing mica schist have been identified in the northwestern part of Yeongjong Island, indicating that small rock masses might have formed there in the past. Therefore, it is judged necessary to accumulate data on pottery containing talc and tremolite, other than the remains in Jungsandong, and to investigate the rocks and soils in the surrounding area with greater precision. The firing temperatures of the pottery found at the Jungsandong site were interpreted by analyzing the stability ranges of the mineral composition of each type. As a result, they have been estimated to range from 550 to $800^{\circ}C$ for the type I artifacts, and from 550 to $700^{\circ}C$ for the type I, II and IV artifacts. However, these temperatures are not the only factors to have affected their physical properties and firing temperature, and the types, particle sizes, and firing time of the clay should all be taken into consideration.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.