• Title/Summary/Keyword: lime-treated fertilizer

Search Result 22, Processing Time 0.018 seconds

Studies on the Alleviation of Heavy Metal (Cadmium) Damage through Soil Improvement (Extraction of Cadmium and the Damage through Exchangeable Cd++ by the Application of Soil Amendments) (중금속(重金屬)(Cd)의 피해경감(被害輕減)을 위(爲)한 토양개량(土壤改良)에 관(關)한 연구(硏究) I. Cd침출(浸出)과 개량제(改良劑) 시용(施用)으로 인(因)한 치환성(置換性) Cd의 감소(減少))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.242-249
    • /
    • 1982
  • Effects of lime and ameliolating materials on decreasing available soil cadmium were studied, applying the amendments to Cd pre-and post-treated soils. Soil sttreated with Cd were placed in pots and kept under field moisture condition, summer through winter in 1981. The results of soil analysis made 40 to 60 days after the Cd treatment are as follows ; 1. Greater amount of Cd was extracted by 0.1N-HCl or 2% Citric acid than N-AcNH4 solution. More Cd was dissoluted by 0.1-HCl than 2% Citric acid. No Cd was extracted by pure water. Showing a wide variance in the amount of extractable Cd among treatments (amendments), the $N-AcNH_4$ solution seemed to be the most effective extracting solution of available soil cadmium. 2. Calcium hydroxide was the most effective materials in reducing $N-AcNH_4$ extractable Cd, followed by calcium carbonate and calcium silicate. 3. Superphosphate is also effective in reducing exchangeable cadmium. The reduction seemed to be attributed to the precipitation of cadmium phosphate. 4. The exchangeable cadmium by $N-AcNH_4$ was large in the soil pH range of 6.0 and 6.5, and it decreased as the soil pH became far apart from these values. The decrese of exchangeable Cd at low pH seemed to be related to the increase of $Mn^{+{+}}$ and that at the high pH to the precipitation as Cd-hydroxide.

  • PDF

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm (탈착 등온식을 이용한 토양 중 인산 완충력 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.