• Title/Summary/Keyword: lime-treated fertilizer

Search Result 22, Processing Time 0.021 seconds

Effect of Soil Amendments on Arsenic Reduction of Brown Rice in Paddy Fields

  • Kang, Dae-Won;Kim, Da-Young;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Kwon, Oh-Kyung;Baek, Seung-Hwa;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • There is an increasing concern over arsenic (As) contamination in rice since Codex Committee on Contaminants in Food (CCCF) discuss on maximum levels for As in rice in 2010. This study was conducted to reduce As concentration in rice by soil amendment treatments in paddy field soils contaminated by As. The selected four amendments were poultry manure, agri-lime, steel slag, and gypsum with the addition of 3% or 5% (w/w) on a dry basis. The As reduction effect could not be verified, as a result of the pot test by adding poultry manure to the paddy soil around the mine located in Yesan. Among the agri-lime treated rice cultivated pots, the As concentration increased up to 32.1%. On the other hand, the content of As in the sample pots treated with steel slag and gypsum decreased by 65.4% and 63.4%, respectively. On the basis of the results of these pot experiments, the field test was carried out in the As polluted rice field around the mine located in Yesan, and when the four amendments were treated, the As content in the brown rice reduced in all the amendment treatments compared with the control plot. The As reduction in brown rice of the amendment was confirmed to be higher efficiency by the order of gypsum > steel slag > poultry manure > agri-lime. As a result of pot experiments using paddy soil around the mine located in Seosan, As stabilization efficiency in rice and As reduction effect could not be determined by comparison to the control. From the rice cultivated from agri-lime treated pot, As concentration increased by 15.8% in rice. On the other hand, the As content of the pots treated with steel slag and gypsum decreased by 39.1% and 60.2%, respectively. In conclusion, distinguished As reducing effectiveness could be expected by soil amendment treatments for rice cultivation.

Evaluation of the Effect of Different Application Ratios of Lime-treated Fertilizer Mixed with Food Waste on Chinese Cabbage (Brassica rapa L.) Yield and Soil Chemical Properties (음식물류폐기물 혼합 석회처리비료 사용량에 따른 배추(Brassica rapa L.) 수량 및 토양 화학성 평가)

  • Young-Jae Jeong;Sang-Geum Lee;Seong-Heon Kim;Sang-Ho Jeon;Youn-Hae Lee;Soon-Ik Kwon;Jae-Hong Shim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.81-89
    • /
    • 2023
  • Lime-treated fertilizer (LTF) is manufactured using the lime stabilization method with food waste. LTF is effective in neutralizing acidic soil, improving nutrient and organic matter content in soil, and increasing crop productivity. However, excessive use of LTF in agricultural land can have undesirable effects, such as reduced crop growth and nutrient accumulation in soil. This study was evaluated the effect of different application ratios of LTF on the crop yield index (%), nutrient (N, P2O5, K2O) uptake index (%), and soil chemical properties. The following treatments were applied: untreated (UT), NPK (NPK), NPK+calcium hydroxide (CH), and NPK+1-, 2-, 4-, and 8-times of LTF (LTF1, 2, 4, and 8). The yield index for LTF1 was the highest among different LTF treatments. Moreover the yield index for spring and winter cabbage in LTF1 treatment was 10% and 21% higher, respectively, than that in NPK treatment. The yield and nutrient indices were decreased with the increase in LTF application ratio. The soil pH and EC tended to increase with the increase in LTF ratio, and were the highest at 8.2 and 2.1, respectively, after cultivation for LTF8 (P<0.05). With the increase in soil pH, the soil inorganic nitrogen (NH4-N, NH3-N) and available phosphate (Av. P2O5) levels were decreased (P<0.05). Our results suggest that LTF1 (643 kg 10a-1) is an appropriate ratio for improving soil chemical properties and increasing crop yield.

Desalinization of marine soil by the application of straw and lime (개흙의 제염에 미치는 볏짚, 석회의 병용효과)

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 1991
  • A laboratory column experiment was conducted to learn the desalinization effect of rice straw, fresh or predecayed in limed marine soil, compared with gypsum. One third of Ca equivalent to indigenous Na plus Mg of the soil was applied to the top 10g out of 80g of total column soil, mixing one half of it to the top soil and the rest spreading on the surface. 1. Pre-decaying of rice straw in limed marine soil promoted the permeability of column soil. but showed a less effectiveness in desalinization of sodium than lime alone or lime plus fresh rice straw treatemenents. 2. Gypsum and calcium carbonate treatments without rice straw fixed Mg in the limed top soil and washed it down disolving more from the layer immediatly be low the treated top soil But the treatment of calcium carbonate and rice straw both together washed out Mg more from lower layers than the upper's, showing only physical desalinization. 3. The desalinization of Na was also severe in the layer immediately below the $CaSO_4$ treated top soil, leauing more Na ilo the top soil, which seemed to be attributed to the peptisation of the top soil and retard peptisation of desalinization when washed the soil applying not enough amount or non of gypsum.

  • PDF

Soil Applications of Slaked Lime and Organic Fertilizer for Reducing 99Tc Transfer from Soil to Rice Seeds (99Tc의 토양-쌀알 전이 감소를 위한 소석회와 유기질 비료의 토양첨가)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Kim, Byung-Ho;Keum, Dong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • To see if slaked lime and organic fertilizer applications to soil are useful as countermeasures for reducing $^{99}Tc$ concentrations in rice seeds after $^{99}Tc$ contamination of paddy fields, pot experiments were performed for two different paddy soils in a greenhouse. The upper soils for a depth of about 20 cm were treated with the agricultural materials and $^{99}Tc$ 15 d before transplanting. The effects were compared using the transfer factor (TF) defined as the ratio of the plant concentration to the soil concentration. In the case of control plants, TF values for brown rice in the two soils were $4.1{\times}10^{-4}$ and $4.3{\times}10^{-4}$. Of various types of the application, only the application of slaked lime at a lower dose (about 0.6 kg $m^{-2}$), which led to a 60% reduction in the TF value for one soil, seemed to be worth using as a countermeasure. Little effect of the same application was found in the other soil so it is important to determine the effect averaged for a number of soils. Organic fertilizer applications at both of two different doses increased the TF value. It is considered necessary to perform experiments for slake lime applications at doses lower than the above.

The Effect of Additions of Lime and Starch on the Silica Sorption Characteristics in Submerged Paddy Soil (석탄(石灰) 및 전분첨가(澱粉添加)에 따른 침수(湛水) 토양(土壤)의 규산흡수량(珪酸吸收量) 및 흡착특성(吸着特性) 변화(變化))

  • Yoon, Jung-Hui;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.35-38
    • /
    • 1984
  • A laboratory experiment was carried out to investigate the effects of the additions of lime soluble starch on the behavior of silica in submerged soil. 1. Available silica in the submerged soil was increased as pH come up to neutral condition and Eh decreased. 2. Application of soluble starch accelerating the soil reduction nearly doubled the amount of silica sorbed in soil from silica solution. 3. Silica sorption of soil treated with slaked lime was increased to some extent in the low silica solution but was not showed that constancy in high silica solution. 4. The reaction between amount of silica sorbed in soil and silica concentration in solution followed not Lamgmuir but Freundlich adsorption isotherm.

  • PDF

The Effect of Soil Conditioners on the Rutin Biosynthesis and the Yield of Buckwheat(Fagopyrum esculentum moench) (메밀의 rutin 생합성과 수량에 대한 토양개량제의 효과)

  • Kim, Hee-Kwon;Lee, Yeen;Kim, Byoung-Ho;Yun, Bong-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 1999
  • This experiment was conducted to investigate the effects of soil conditioners, such as lime, borax, poultry waste sawdust manure (P.W.S.M) and mixed oil cakes (M.O.C), on the rutin biosynthesis and the yield of buckwheat. The content of phosphorus ($P_2O_5$) in buckwheat plants before flowering was higher at before flowering than that of flowering time at all plots. The content of nitrogen (N), potassium ($K_2O$), calcium (CaO) and magnesium (MgO) was lower at before flowering than those of flowering time at all plots. The contents of rutin in buckwheat plant at flowering time was higher than that at before flowering content of rutin in leaf was higher than that in stem. The contents of rutin in buckwheat plant was the highest at the plot treated with borax (B) compared to other plots. Correlation between rutin and amino acid was positive in buckwheat leaf, while it was negative in buckwheat stem. The yield of buckwheat was 21 percent higher at the plot treated with borax than the plot applied with the other three ingredients.

  • PDF

Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD) (다중 호기 소화공정을 이용한 양돈분뇨 슬러리의 자원화 연구)

  • Kim, Soo-Ryang;Yoon, Seong-Ho;Lee, Jun-Hee;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.

  • PDF

Studies on the split application of potassium on paddy -The amount of potash to be applied for basal and top dressing in case of liming (수도(水稻)에 대(對)한 가리분시(加里分施)에 관(關)한 연구(硏究) -석회(石灰)의 시용(施用)과 가리(加里)의 기추비량(基追肥量)-)

  • Oh, Wang Keun;Kim, Sung Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.4
    • /
    • pp.177-181
    • /
    • 1975
  • The pot experiment was conducted primarily to clarify the relationship between lime application and they amount of potassium for the basal and top dressings on paddy rice. (Orizae sativa L. cultivar; variety Jinheung) The soils mixed with lime and without lime were separately filled in to 0.2827 a. open-bottom concretepots. The soil with lime was treated with slaked lime, at two weeks before transplanting to correct soil pH. around 7.0. The total amount of potassium 12 kilograms per 10a was applied by two or three split doses during transplanting, 19 days after transplanting and primodial stages. The results of experiment obtained are summarized as follows: 1. The application of potash in the rate of 4kg per 10a or less for basal dressing and the remaining amount of potash for top dressing at 19 days after transplanting and primodial stage or one top dressing, at primodial stage have increased the yield of paddy with increased number of panicles per hill, milliequivalent ratio of $K^-/Ca^{++}+Mg^{++}$ in leaves in the later stage of growth, number of ripened grains per panicle, and rate of grain maturity. 2. On the other hand, the greater the amount of potassium given for the basal dressing (over 4kilograms per 10a), the smaller number of tillers and panicles were resulted. And the tendency was considered chiefly due to high salt concentration at the early stage of rice growth.

  • PDF

Lead Stabilization in Soil Amended with Lime Waste: An Extended X-ray Absorption Fine Structure (EXAFS) Investigation

  • Lim, Jung Eun;Lee, Sang Soo;Yang, Jae E.;Ok, Yong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.443-450
    • /
    • 2014
  • To determine Pb species in soils following the immobilization process, sequential extraction has been used despite the possibility of overestimating Pb species from unintended reactions during chemical extraction. Meanwhile, the application of extended X-ray absorption fine structure (EXAFS) has been shown to provide a more precise result than chemical extraction. In this study, the immobilization of Pb in contaminated soils treated with liming materials such as oyster shell (OS) or eggshell (ES) was evaluated with thermodynamic modelling and EXAFS analysis. Thermodynamic modelling by visual MINTEQ predicted the precipitation of $Pb(OH)_2$ in OS and ES treated soils. In particular, the values of saturation index (SI) for $Pb(OH)_2$ in OS (SI=0.286) and ES (SI=0.453) treated soils were greater than in the control soil (SI=0.281). Linear combination fitting (LCF) analysis confirmed the presence of $C_{12}H_{10}O_{14}Pb_3$ (lead citrate, 44.7%) by citric acid from plant root, Pb-gibbsite (Pb adsorbed gibbsite, 26.4%), and Pb-kaolinite (Pb adsorbed kaolinite, 20.3%) in the control soil. On the other hand, $Pb(OH)_2$ (16.8%), Pb-gibbsite (39.3%), and Pb-kaolinite (25.6%) were observed in the OS treated soil and $Pb(OH)_2$ (55.2%) and Pb-gibbsite (33.8%) were also confirmed in the ES treated soil. Our results indicate that the treatment with OS and ES immobilizes Pb by adsorption of Pb onto the soil minerals as a result of the increase in soil negative charge and the formation of stable $Pb(OH)_2$ under high pH condition of soils.

Effect of Lime and Temperature on the Changes of Available Soil Nutrients in Acid Sulfate Soil under Submergence (특이산성토양(特異酸性土壤)에서 담수시(湛水時) 석회처리(石灰處理) 및 온도조절(溫度調節)이 토양(土壤)의 유효성분(有效成分) 변화(變化)에 미치는 영향(影響))

  • Kang, Ui-Gwm;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.282-288
    • /
    • 1985
  • This experiment was conducted to investigate the changing patterns of the available elements by the control of lime addition amount and temperature in Acid Sulfate Soils under the submerged condition. The results obtained were summarized as follows: 1. pH and contents of available phosphate, soluble silicate, $NH_4-N$, and exchangeable iron in soils were decreased but exchangeable aluminium and manganese, and water soluble sulfur in soils increased after submergence. 2. Lime treatment increased pH, available phosphate, soluble silicate, $NH_4-N$, and water soluble sulfur, but that decreased exchangeable aluminium, iron, and manganese in soils. 3. Treatment with 12me/100gr of Ca as $CaCO_3$, showed the marked effect in increasing the exchangeable aluminium and iron, and increasing pH value to about 6.5 as well as available phosphate and $NH_4-N$. 4. Increases in available phosphate, $NH_4-N$, and exchangeable iron with aging of the soil flooded and lime treated were higher at $35^{\circ}C$ than those at $25^{\circ}C$. 5. Throughout submerged period a significant positive correlation was observed between pH and soluble silicate while the pH has negative correlation with exchangeable elements such as aluminium, iron, and manganese etc.

  • PDF