• 제목/요약/키워드: lime stabilization

검색결과 87건 처리시간 0.026초

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.

Lime - Fly Ash / Rice Husk Ash에 의한 해성퇴적토의 강도특성 개선 (Strength Improvement of Lime-treated Soil with Fly Ash and Rice Husk Ash)

  • 민덕기;황광모;이경준;김현도
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.55-62
    • /
    • 2000
  • In this paper, a laboratory investigation was carried out to estimate the strength improvement of quicklime mixture with fly ash and rice husk ash for the effective use of surplus soils, and the shear strength with curing time was estimated at lime 10 percent with the change of fly ash and rice husk ash content. The effect of strength improvement has been established through the change of fly ash and rice husk ash content from the samples taken at Samsan region, Ulsan. The test results indicated that the presence of lime with fly ash and rice husk ash encouraged the stabilization efficiency of lime with fly ash and rice husk ash, and increased shear strength. Furthermore, it is necessary for inquiring into the relationship between the characteristics of strength and the chemical components.

  • PDF

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

생석회와 첨가제에 의한 해성퇴적토의 강도개선 (Strength Improvement of Lime-treated Soil with Chloride and Sulphate)

  • 민덕기;황광모;박근호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.227-232
    • /
    • 1999
  • In this paper, a laboratory investigation was carried out to estimate the strength improvement of quicklime mixture for the effective use of surplus soils, and the shear strength with curing time was estimated at the content of lime. The effect of strength improvement has been established through the change of lime content with chlorides and sulfates from the samples taken at Samsan region, Ulsan. The test results indicated that the presence of calcium sulphate encouraged the efficiency of lime stabilization, and increased shear strength. Furthermore, it is necessary for inquiring into the relationship between the characteristics of strength and the chemical components.

  • PDF

Stabilization of Lateritic Soil with Eggshell Powder

  • Ndagijima, Jacques;Kim, Kanghyun;Kim, Seunghyun;Shin, Jongho
    • 한국지반환경공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.5-13
    • /
    • 2022
  • In tropical regions, lateritic soil is frequently used in road embankment. However, it is one of the sources of road failure owing to its low strength. Generally, cement and lime are used as stabilizers for lateritic soil, but they are not environmentally friendly. Some studies try to use eggshells, for they are food waste and share the same chemical composition as lime. Previous researchs have shown that eggshell powder could enhance the strength of lateritic soil. This research investigated the effect of particle size of the eggshell powder and the effect of the protein-membrane presence in the eggshell on stabilizing capacity of soil. Through laboratory tests, unconfined compressive strength was examined for various particle sizes. The particle size of eggshell powder ranging between 150 ㎛ and 88 ㎛ was appropriate size that made an excellent stabilizer at 3% concentration. On the other hand, the protein-membrane reduced the stabilizing ability of the eggshell powder when the content of eggshell powder is less than 4% in soil. Numerical analysis of road embankment was performed based on the results obtained in the laboratory tests. It is shown that the eggshell powder has improved the stability of the sub-base of the road embankment.

송도 지역 실트질 점성토 고화처리를 위한 최적 배합 조건 (The Optimum Mixture Condition for Stabilization of Songdo Silty Clay)

  • 김준영;장의룡;정충기;장순호
    • 한국지반공학회논문집
    • /
    • 제27권5호
    • /
    • pp.5-15
    • /
    • 2011
  • 최근 연안지역에서의 대형건설공사 증가로 인해 대규모의 연약지반처리 공사가 많이 이루어지고 있다. 이로 인해, 흙에 시멘트나 석회를 첨가하여 안정성과 내구성을 증대시키는 고화안정처리공법이 연약지반 현장의 표층처리에 빈번히 사용되고 있다. 고소성, 고압축성의 초연약 점성토를 대상으로 한 고화처리 연구는 그 동안 많이 이루어져 왔으나 상대적으로 낮은 소성성과 압축성을 가진 실트질 점성토를 대상으로 한 고화처리 연구는 찾아보기 힘들다. 따라서 본 연구에서는 송도 지역의 저소성 실트질 점성토를 배합 함수비, 개량재 배합비, 양생 기간을 변화시키며 시멘트와 생석회로 고화처리하고, 일축압축 시험 및 평판재하시험을 통하여 강도 특성을 파악하였다. 일축 압축 시험과 평판 재하 시험으로부터 상당히 일치하는 강도 특성 결과를 얻었으며, 이를 바탕으로 개량토를 매립지 표토층으로 이용하였을 경우 건설 장비의 주행성을 평가하였다. 이상의 결과로부터 송도 지역 점성토를 고화 처리하는 최적의 조건을 얻을 수 있었다.

여러 안정화제가 산성 및 알칼리 토양에서 중금속 안정화에 미치는 영향 (Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils)

  • 김민석;민현기;김정규;구남인;박정식;박관인
    • 한국환경농학회지
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2014
  • BACKGROUND: Recent studies using many amendments for heavy metal stabilization in soil were conducted in order to find out new materials. But, the studies accounting for the use of appropriate amendments considering soil pH remain incomplete. The aim of this study was to investigate the effects of initial soil pH on the efficiency of various amendments. METHODS AND RESULTS: Acid soil and alkali soil contaminated with heavy metals were collected from the agricultural soils affected by the abandoned mine sites nearby. Three different types of amendments were selected with hypothesis being different in stabilization mechanisms; organic matter, lime stone and iron, and added with different combination. For determining the changes in the extractable heavy metals, water soluble, Mehlich-3, Toxicity Characteristic Leaching Procedure, Simple Bioavailability Extraction Test method were applied as chemical assessments for metal stabilization. For biological assessments, soil respiration and root elongation of bok choy (Brassica campestris ssp. Chinensis Jusl.) were determined. CONCLUSION: It was revealed that lime stone reduced heavy metal mobility in acid soil by increasing soil pH and iron was good at stabilizing heavy metals by supplying adsorption sites in alkali soil. Organic matter was a good source in terms of supplying nutrients, but it was concerning when accounting for increasing metal availability.

수질안정화 약품 주입에 따른 상수도관 내부 부식제어 특성 연구 (Corrosion control technique for pipeline system through injecting water stabilizer)

  • 황병기;우달식
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.545-551
    • /
    • 2011
  • 최근 고품질의 수돗물에 대한 소비자의 요구가 상승함에 따라 상수도 배급수관의 내부 부식에 의한 수질악화 및 부식제어 연구에 대한 관심이 높아지고 있다. 이에 따라 노후 관 교체 사업을 대신하여 수질 관리를 위한 부식 제어 수단을 강구하지 않고서는 근본적인 문제 해결이 이루어질 수 없는 실정이다. 본 연구에서는 수질안정화 약품 주입에 의한 상수도관 내부 부식제어 효율을 평가하기 위해 Pilot Plant 실험을 실시하였으며, 부식성제어 효율은 물의 부식성을 나타내는 LSI(Langelier Saturation Index)값에 의해 평가되었다. 실험결과, Pilot Plant에 의해 제조된 반응수는 수질안정화 약품인 액상소석회($Ca(OH)_2$, liquid lime)의 주입으로 부식성이 개선되어 철 용출이 억제되는 효과가 확인되었다. 강관과 동관을 절단하여 제작한 시편의 부식도 측정을 통해 각각 35.4, 44.5%의 부식제어 효과가 있음을 확인하였고 수질안정화 약품이 주입된 Sample관이 더 두터운 부식 생성물 층을 갖고 있는 것으로 밝혀졌으며, 결과적으로 수질안정화 약품을 투입한 배관이 부식 방지 측면에서 안정한 수질을 갖고 있음을 알 수 있었다.

Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix

  • Fattah, Mohammed Y.;Al-Saidi, A'amal A.;Jaber, Maher M.
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.113-132
    • /
    • 2015
  • In this study, lime (L), silica fume (SF), and lime-silica fume (L-SF) mix have been used for stabilizing and considering their effects on the soft clay soil. The improvement technique adopted in this study includes improving the behaviour, of a square footing over soft clay through grouting the clay with a slurry of lime-silica fume before and after installation of the footing. A grey-colored densified silica fume is used. Three percentages are used for lime (2%, 4% and 6%) and three percentages are used for silica fume (2.5%, 5%, 10%) and the optimum percentage of silica fume is mixed with the percentages of lime. Several tests are made to investigate the soil behaviour after adding the limeand silica fume. For grouting the soft clay underneath and around the footing, a 60 ml needle was used as a liquid tank of the lime-silica fume mix. Slurried silica fume typically contains 40 to 60% silica fume by mass. Four categories were studied to stabilize soft clay before and after footing construction and for each category, the effectiveness of grouting was investigated; the effect of injection hole spacing and depth of grout was investigated too. It was found that when the soft clay underneath or around a footing is injected by a slurry of lime-silica fume, an increase in the bearing capacity in the range of (6.58-88)% is obtained. The footing bearing capacity increases with increase of depth of grouting holes around the footing area due to increase in L-SF grout. The grouting near the footing to a distance of 0.5 B is more effective than grouting at a distance of 1.0 B due to shape of shear failure of soft clay around the footing.