• Title/Summary/Keyword: lignin removal

Search Result 66, Processing Time 0.029 seconds

Cationized Lignin Loaded Alginate Beads for Efficient Cr(VI) Removal

  • Jungkyu KIM;YunJin KIM;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.321-333
    • /
    • 2023
  • In this study, lignin, a lignocellulosic biomass, was chemically modified to produce polyethyleneimine-grafted lignin (PKL) with maximum hexavalent chromium [Cr(VI)] adsorption capacity. Changes in the physicochemical properties due to the cationization of lignin were confirmed through elemental analysis, Fourier transform infrared spectroscopy, and moisture stability evaluation. Alginate (Alg) beads containing PKL (Alg/PKL) were prepared by incorporating cationic lignin into the Alg matrix to apply the prepared PKL in a batch-type water treatment process. The optimal Alg/lignin mixing ratio was selected to increase the Cr(VI) adsorption capacity and minimize lignin elution from the aqueous system. The selected Alg/PKL beads exhibited an excellent Cr(VI) removal capacity of 478.98 mg/g. Isothermal adsorption and thermodynamic analysis revealed that the Cr(VI) removal behavior of the Alg/PKL beads was similar to that of heterogeneous chemical adsorption. In addition, the bulk adsorbent material in the form of beads exhibited adsorption behavior in three stages: surface adsorption, diffusion, and equilibrium.

The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water (리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용)

  • Kim Eunji;Kim Naeun;Park Juyeong;Lee Heuiyun;Yoon Kwangsuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

State-of-the-Art Review on High Yield Pulping Research in Japan

  • Nakano, J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.64-76
    • /
    • 1980
  • Fig. 8 summarizes the present status of high yield pulp production and the directions of research on modification. A thick line indicates pulping process presently in use. As mentioned previously, one kind of modification is to introduce hydrophilic groups onto the pulp. Still unsolved is whether or not the introduction of hydrophilic groups should be restricted to lignin only. Goring (28) reported that middle lamella lignin has fewer phenolic hydroxyl groups than cell wall lignin and suggested that such a difference in the lignin may be useful in the removal of middle lamella lignin. The introduction of hydrophilic groups onto pulp may not be enough to modify high yield pulp. The removal of some portion of carbohydrate may be also necessary from the standpoint of softening of pulp fibers. There is no information at what lignin and carbohydrate, and how much should be removed. The combination with synthetic high polymers may also be important in modifying high yield pulp. Prof. C. Schuerch of the State University of New York who was a visiting professor at the University of Tokyo in 1974, mentioned that the hydrophilicity of lignin would be promoted, if phenolic hydroxyl or carboxyl groups could be introduced into the aromatic nucleus of lignin. If this were possible. this process would also mean a pulp yield of more than 100%. This idea is just one example of the expectation made possible through lignin chemistry. Instead of the introduction of hydrophilic group, the oxidative degradation of aromatic nucleus of lignin may also be useful in promoting the hydrophilicity of pulp. In this case, ozone may be an excellent chemical. However, there are a lot of problems to be solved such as homogeneity of reaction and selectivity of ozone for lignin. The above ideas are summarized in Fig. 9. There are many problems to be solved in the production of an excellent high yield pulp which is comparable to chemical pulp. The information from wood chemistry hopefully will elucidate some of the problems mentioned above.

  • PDF

Characteristics of Lignin Removal in Cellulosic Ethanol Production Process (셀룰로오스 에탄올 생산공정에서 리그닌의 제거특성)

  • Lee, You-Na;Lee, Seung-Bum;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.77-80
    • /
    • 2011
  • In this study, we measured changes in the lignin content of acidified lignocellulosic biomass such as rice straw, saw dust, chestnut shell and peanut hull and analyzed the conversion property to cellulosic ethanol. It turns out that the lignin content increases in chestnut shell, rice straw, saw dust, peanut hull order and the conversion property to cellulosic ethanol is superior in the reverse order. Thus, the removal of lignin by acidification is necessary. In addition, as the concentration of sulfuric acid increases, the lignin content decreases and the yield of cellulosic ethanol increased. The optimum concentration of sulfuric acid is 20 wt%.

The Removal Rate of the Constituents of the Litters in the Aquatic Plant Ecosystems I. Phragmites longivalvis Grasslands in a Delta of the Nakdong River (수생식물 생태계에 있어서 낙엽의 구성성분의 유실률 I. 낙동강 삼각주지역의 갈대 초지)

  • 장남기;오경환
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.331-342
    • /
    • 1995
  • An investigation was performed to reveal the removal rates of organic constituents of the litters in a Phragmithea longivalvis grassland in a Delta of the Nakdong River, The removal rates of the inorganic and organic materials are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each organic constituent were calculated using these new models. The removal rates of cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein were 2.67, 1.39, 1.25, 1.02, 0.92, 0.49 and 0.47, respectively, The periods required to reach half time to the steady state of the removal and accumulation for cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein of the litter were 0.26, 0.50, 0.55, 0.68, 0.75, 1.41 and 1.48 years, respectively.

  • PDF

Relationship between biomass components dissolution (xylan and lignin) and enzymatic saccharification of several ammonium hydroxide soaked biomasses (초본류 3가지 암모니아수 침지 처리에서 바이오매스 성분(자이란과 리그닌) 용출 정도와 효소당화의 관계)

  • Shin, Soo-Jeong;Han, Sim-Hee;Cho, Nam-Seok;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Corn stover, hemp woody core and tobacco stalk were treated by dilute ammonium hydroxide soaking for improving the enzymatic saccharification of cellulose and xylan to monosaccharides by commercial cellulase mixtures. As more lignin removal by dilute ammonium hydroxide impregnation led to more enzymatic saccaharification of cellulose and xylan to monosaccharides (corn stover vs tobacco stalk). There was no relationship between xylan removal by dilute ammonium hydroxide impregnation and enzymatic saccharification of polysaccharides in pretreated samples. Except corn stover, lower temperature and longer treatment ($50^{\circ}C$-6 day) was less lignin removal than higher temperature and shorter treatment ($90^{\circ}C$ 16 h). Corn stover showed the highest enzymatic saccharification of cellulose and xylan but tobacco stalk showed the lowest.

Recovery of Xylo-oligomer and Lignin Liquors from Rice Straw by Two 2-step Processes Using Aqueous Ammonia Followed by Hot-water or Sulfuric Acid

  • Vi Truong, Nguyen Phuong;Shrestha, Rubee koju;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.682-689
    • /
    • 2015
  • A two-step process was investigated for pretreatment and fractionation of rice straw. The two-step fractionation process involves first, soaking rice straw in aqueous ammonia (SAA) in a batch reactor to recover lignin-rich hydrolysate. This is followed by a second-step treatment in a fixed-bed flow-through column reactor to recover xylo-oligomer-rich hydrolysate. The remaining glucan-rich solid cake is then subjected to an enzymatic process. In the first variant, SAA treatment in the first step dissolves lignin at moderate temperature (60 and $80^{\circ}C$), while in the second step, hot-water treatment is used for xylan removal at higher temperatures ($150{\sim}210^{\circ}C$). Under optimal conditions ($190^{\circ}C$ reaction temperature, 30 min reaction time, 5.0 ml/min flow rate, and 2.3 MPa reaction pressure), the SAA-hot-water fractionation removed 79.2% of the lignin and 63.4% of the xylan. In the second variant, SAA was followed by treatment with dilute sulfuric acid. With this process, optimal treatment conditions for effective fractionation of xylo-oligomer were found to be $80^{\circ}C$, 12 h reaction time, solid-to-liquid ratio of 1:12 in the first step; and 5.0 ml $H_2SO_4/min$, $170^{\circ}C$, and 2.3 MPa in the second step. After this two-step fractionation process, 85.4% lignin removal and 78.9% xylan removal (26.8% xylan recovery) were achieved. Use of the optimized second variant of the two-step fractionation process (SAA and $H_2SO_4$) resulted in enhanced enzymatic digestibility of the treated solid (99% glucan digestibility) with 15 FPU (filter paper unit) of CTec2 (cellulase)/g-glucan of enzyme loading, which was higher than 92% in the two-step fractionation process (SAA and hot-water).

The Change of Kenaf Fiber Characteristics by the Contents of Noncellulosic Material (비셀룰로오스 함량에 따른 케나프 섬유의 특성변화)

  • Lee, Hye-Ja;Han, Young-Sook;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1581-1588
    • /
    • 2006
  • The effects of removal of lignin or hemicellulose on the cottonizing and pulping characteristics of kenaf fiber were studied by comparing the conditions of non-cellulosic material contents, fiber lengths and dyeability. And the effects of lignin or hemicellulose on dyeability of the kenaf fiber using CI Direct Green 26 and CI Direct Red 81 were investigated. The results were as follows. The lignin contents decreased and the kenaf fiber became shorter and finer as the reaction time with sodium chlorite increased. The hemicellulose could be removed by treating sodium hydroxide solution to the fiber from which the lignin partly removed. The 80% of hemicellulose could be removed by 5% of sodium hydroxide solution in 5 minutes. But if lignin were not removed at all, hemicellulose could not be removed. The fiber lengths proper for apparel were obtained after treating sodium chlorite for 10-20 minutes and those for pulping were obtained after treating sodium chlorite for 40 minutes. The kenaf fibers from which lignin and hemicellulose partly removed were dyed with CI Direct Green 26 and CI Direct Red 81. Their dyeability increased as the removal rates of lignin increased. The ${\Delta}E$ values of kenaf fiber dyed with CI Direct Green 26 were lower than CI Direct Red 81.

Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR) (순환식 암모니아 반응기(Ammonia Circulation Reactor (ACR))를 이용한 옥수수대의 전처리 및 효소 당화율 향상)

  • Shrestha, Rubee Koju;Hur, Onsook;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.335-341
    • /
    • 2013
  • Ammonia circulation reactor (ACR) was devised for the effective pretreatment of corn stover. This method is designed to circulate aqueous ammonia continuously so that it can reduce the chemical and water consumption during pretreatment. In this study, ammonia pretreatment with various reaction conditions such as reaction time (4~12 hour), temperature ($60{\sim}80^{\circ}C$), and solid:liquid ratio (1:3~1:8) was tested. Chemical compositions including solid remaining after reaction, lignin and carbohydrates were analyzed and enzymatic digestibility was also measured. It was observed that as reaction conditions become more severe, lignin removal was significantly affected, which was in the range of 47.6~70.6%. On the other hands, glucan and xylan losses were not substantial as compared to that of lignin. At all tested conditions, the glucan loss was not changed substantially, which was between 4.7% and 15.2%, while the xylan loss varied, which was between 7.4% and 25.8%. With (15 FPU-GC220+30 CBU)/g-glucan of enzyme loading, corn stover treated using ammonia circulation reactor for 8~12 hours resulted in 90.1~94.5% of 72-h glucan digestibility, which was higher than 92.7% of $Avicel^{(R)}$-101. In addition, initial hydrolysis rate (at 24 hour) of this treated corn stover was 73.0~79.4%, which was shown to be much faster than 69.5% of $Avicel^{(R)}$-101. As reaction time increased, more lignin removal and it was assumed that the enhanced enzymatic digestibility of treated biomass was attributed to the lignin removal.

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha;Um, Byung Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.703-719
    • /
    • 2017
  • Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.