• Title/Summary/Keyword: lightning path

Search Result 18, Processing Time 0.032 seconds

Physically Inspired Fast Lightning Rendering (물리적 특성을 고려한 빠른 번개 렌더링)

  • Yun, Jeongsu;Yoon, Sung-Eui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • In this paper, we propose an algorithm for generating lightning paths, which are more realistic than those of random tree based algorithm and faster than a physically based simulation algorithm. Our approach utilizes physically based Dielectric Breakdown Method (DBM) and approximates the electric potential field dramatically to generate the lightning path. We also show a guide path method for the lightning to avoid obstacles in a complex scene. Finally, our method renders fast and realistic lightning by considering physical characteristics for the thickness and brightness of the lightning stream. Our result of the lightning path shares similarity to natural phenomenon by having about 1.56 fractal dimensions, and we can generate the lightning path faster than a previous physically based algorithm. On the other hand, our method is difficult to apply on the real-time games yet, but our approach can be improved by performing the path generation algorithm with GPU in future.

Analysis of Surge Current Path of Flyback Converter by Lightning Surge (뇌서지에 의한 플라이백 컨버터의 서지전류 경로 분석)

  • Park, Jun-Woo;Lee, Kang-Hee;Kim, Jin-Ho;Hong, Sung-Soo;Won, Jae-Sun;Kim, Jong-Hae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.178-183
    • /
    • 2013
  • The study of lightning surge have been conducted on information and communications equipment and power system. However, the research on SMPS itself is an inactive field. This paper analyzes surge current path of flyback converter with the combination wave generator by lightning surge. Also, this paper discloses that there exists the surge current with high-frequency component besides the low-frequency component based on the standard surge current. This high-frequency surge current is the major reason to damage the semiconductor devices such as FET and IC. To confirm the validity of the proposed issue, the analysis and experimental results are presented.

Arc Fusion Protection of Covered Conductors Using AFPD (섬락 단선 방지 장치에 의한 피복 절연 가공배전 선로의 유도뢰애 의한 단선 방지)

  • Lee, Yong-Han;Jung, Dong-Hak;Ha, Bok-Nam;NamKung, Do;Kim, Myong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.800-802
    • /
    • 1997
  • After flashover occurs on the overhead distribution line by lighting strokes(direct or induced), the power frequency arc current continues. If lightning flashover occurs on the overhead lines using covered conductors, the power frequency art current with fixed path overheats the conductor, and arc fusion fault can be occurred. There are two categories protecting or reducing methods of arc fusion faults caused by lightning stokes. - Reducing lightning flashover rate : G/W, LA, etc. - Protection by AFPD(Arc Fusion Protection Device) : power follow current interruption. This paper presents lightning surge phenomena on overhead distribution lines and protecting performance of arc fusion Protection devices to the lightning strokes nearby overhead line.

  • PDF

A Study on Real-Time Lightning Simulation for Smart Device (스마트기기 게임에 적합한 실시간 번개 시뮬레이션 연구)

  • Park, SungBae;Oh, GyuHwan
    • Journal of Korea Game Society
    • /
    • v.13 no.4
    • /
    • pp.35-46
    • /
    • 2013
  • In this paper, we show a real-time lightning simulation for smart device game. Our proposed method uses physically based Dielectric Breakdown Model to similar real world lightning path and we simplify the algorithm for real-time simulation in smart device. In addition, the rendering process can render multiple lightning and can real-time render in smart device. Finally, our lightning can support interactive with user. The simulation method will be effectively useful for a game that needs a real-time simulation as its game element in smart device environment.

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

Characteristics of Transient Overvoltages for the Towers with Time Varying Tower Footing Resistance

  • Kwak, Hee-Ro
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.3
    • /
    • pp.118-124
    • /
    • 1984
  • This paper investigated the characteristics of transient overvoltages on the tower caused by time varying tower footing resistance in the path of lightning stroke current entering earth on transmission lines. The tower with time varying tower footing resistance was simulated and the transient overvoltageson the tower due to lightning stroke current were computer by Nodal Solution Method. From the results, it was found that the determination of the steady state values as a limit of inductive tower footing resistance causes higher transient overvoltages than CFO voltages of insulator strings and V-T characteristics of the insulator strings should be considered for computation of backflashover rate.

  • PDF

Measurement and Analysis of Transient Grounding Resistance with the Pulse Generator (펄스발생기에 의한 과도접지저항의 측정과 분석)

  • Park, J.S.;Yang, J.J.;Lee, K.O.;Lee, B.H.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1864-1866
    • /
    • 1996
  • Grounding is the art of making an electrical connection to the earth. In order to protect man, electrical and/or electric equipments from the lightning strokes, all the energy of lightning strokes must be diverted via a safe path to earth. It is essential to the transient grounding resistance against lightning strokes. In this paper, measurements and analyses of grounding surge impedance have been investigated. For measurements of grounding surge impedance the pulse generator was designed and fabricated. The pulse generator has rise time of 22.4 ns and pulse duration of $8\;{\mu}s$. The transient grounding resistance has been measuring by injecting low power and step current between the earthing system under test and a remote reference earth and measuring the potential rise caused by this current. As a result, the transient grounding resistance against lightning surge in the short time domain is much higher than steady state grounding resistance.

  • PDF

Study on the Effect of Parallel Ground Conductor at the Single Point Bonding in Underground Transmission System (지중송전 편단접지개소에서의 병행지선 설치효과 검토)

  • Kang, J.W.;Park, H.S.;Yoon, H.H.;Yoon, J.K.;Bae, J.H.;Suk, K.H.;Oh, J.M.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.736-737
    • /
    • 2007
  • The single point bonding in underground transmission system can induce high voltage on the sheath when ground fault, lightning serge and switching serge occurs, at that time underground cable systems cannot offer a return path of fault current. Accordingly if fault current, which cannot return to ground, flows at the single point bonding, high voltage can be induced in SVL and that voltage can cause aging and breakdown of SVL. Therefore this paper study on the effect of parallel ground conductor at the single point bonding when ground fault and lightning serge occurs by using ATPDraw.

  • PDF

Characteristics of lightning impulse pre-breakdown discharge in $SF_6\;and\;SF_6/CO_2$ mixtures ($SF_6$$SF_6/CO_2$ 혼합기체 중에서의 뇌임펄스 전구방전의 특성)

  • Lee, Bok-Hee;Oh, Sung-Kyun;Baek, Young-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.57-60
    • /
    • 2005
  • This paper describes the experimental results of the pre-breakdown phenomena in $SF_6/CO_2$ mixtures under non-uniform electric fields caused by positive and negative lightning negative voltages. $SF_6/CO_2$ mixtures have an advantage of an environmental aspect and cost reduction, and safety aspects. In order to analyze the pre-breakdown processes in $SF_6/CO_2$ mixtures stressed by impulse voltages, pre-breakdown current and luminous signals were measured by a shunt and a photo-multiplier tube, respectively. Dielectric strengthes of $SF_6/CO_2$ mixtures were investigated. Additionally, characteristics of discharge channels were observed by high speed cameras and the physical properties were discussed. The pre-breakdown propagates with a stepwise process. The in to breakdown from the corona onset point in positive polarity was shorter than that in negative polarity. The time intervals of positive leaders are shorter than those of negative leaders, and the path of positive leader channel is zigzag.

  • PDF

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.