• 제목/요약/키워드: light.heat.pressure

검색결과 92건 처리시간 0.021초

지속적 가압 주사식 열중합 의치상 레진에 대한 열중합, 자가중합 및 광중합 레진의 결합력에 관한 비교분석 (COMPARATIVE TENSILE BOND STRENGTH OF HEAT-CURED, COLD-CURED, AND LIGHT CURED DENTURE BASE RESINS BONDED TO CONTINUOUS-PRESSURE INJECTION TYPE DENTURE BASE RESIN)

  • 황승우;정문규
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.385-393
    • /
    • 1993
  • Injection processing of denture base resin was introduced by Pryer in 1942, in an attempt to reduce processing shrinkage. More recently a continuous-pressure injection type technique has been developed (SR-Ivocap, Ivoclar AG, Schaan, Liechtenstein.), and it reduced processing error and increased resin density. The purpose of this study was to compare tensile bond strength of heat-cured, cold-cured, and light-cured denture base resin bonded to continuous-pressure injection type resin. To know it, 60 cylindrical resin specimens were fabricated, and tensile bond strength were measured. The results were as follows : 1. The mean tensile bond strength bonded to continuous-pressure injection type resin was lower than bonded to conventional heat cured resin. But tensile bond strength of conventional heat cured resin bonding with light cured resin was lower than continuous-pressure injection type resin. 2. Of the tensile bond strength bonded to continuous-pressure injection type resin, tensile bond strength bonding with continuous-pressure injection type resin was the greatest(but not significantly different from bonding with conventional heat cured resin), followed by cold-cured, light-cured resin. 3. Of the tensile bond strength bonded to conventional heat cured resin, tensile bond strength bonding with conventional heat cured resin was the greatest and followed by continuous-pressure injection type resin, cold-cured resin, light-cured resin. According to these results, bonding of continuous-pressure injection type resin with conventional heat cured resin or continuous-pressure injection type resin is acceptable, but bonding with light-cured resin is questionable.

  • PDF

Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials

  • Shim, Ji-Suk;Lee, Jeong-Yol;Choi, Yeon-Jo;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.47-50
    • /
    • 2015
  • PURPOSE. This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS. Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at $60^{\circ}C$, $100^{\circ}C$, or $140^{\circ}C$. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (${\alpha}$=.05). RESULTS. There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at $100^{\circ}C$ and $140^{\circ}C$. CONCLUSION. Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment.

중합 조건에 따른 간접복합레진의 굴곡강도 (Flexural strength of indirect composite resin with different polymerization conditions)

  • 금영희;김부섭
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.333-341
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the flexural strength of indirect composite resins with different polymerization conditions. Methods: Ten specimens ($2mm{\times}2mm{\times}25mm$) of each composite resins (Tescera (T), Gradia (S) and Sinfony (S)) were fabricated by two polymerization methods : manufacturers's and light heat pressure. Composite resins polymerized by manufacturers's method and light heat pressure served as control (TS, GS and SS) and experimental groups (TE, GE and SE), respectively. The composite resins were tested for flexural strength and the surface of composite resins were observed with scanning electron microscope (SEM) under X1,000 magnification. Results: The flexural strength values of cured composite resin decreased in the following order: TE (195.4MPa), TS (179.8MPa), GE (169.9MPa), SE (137.7MPa), SS (111.1MPa) and GS (100.9MPa) groups. Conclusion: The flexural strength values between the control and the experimental groups were not significantly different although experimental groups showed higher flexural strength values than control groups.

The Effect of Light and Darkness on Acclimatization of Laying Hens

  • Izzeldin, B.;Kassim, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권5호
    • /
    • pp.694-697
    • /
    • 2000
  • Laying hens kept in different light and dark periods of the day at high ambient temperature of maximum $35^{\circ}C$ were challenged to $38.5{\pm}0.5^{\circ}C$ acute heat 3 hours daily for 7 consecutive days. They were found to have a significant (p<0.01) acclimatization response (rectal temperature) to heat stress during the dark period compared to those exposed to the same temperature during the light period. The blood pH was not significantly different. The partial pressure of carbon dioxide ($PCO_2$) was significantly high (p<0.01) except in day 4. Similarly the blood bicarbonate ($HCO_3$) concentration was significantly high (p<0.05) except day three and day four. Acute heat exposure in the first day increased the body temperature in both groups (Light and Dark) reaching $44^{\circ}C$, followed by gradual reduction in body temperature. The dark treated birds showed rapid reduction in body temperature ($42.88^{\circ}C$) and adaptation to high temperature during days 2-4 but that this was lost to some extent in days 6-8. However this was not obvious in the light treated birds. It is concluded that darkness reduce hyperthermia and enhance acclimatization responses during acute heat stress.

CNG압력용기의 열처리 조건별 파열 특성에 관한 실증적 연구 (An Empirical Study on the Bursting Properties According to Heat Treatment Condition of the CNG Pressure Vessel)

  • 김의수
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.1-7
    • /
    • 2017
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses is equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. In this study, the bursting test for the pressure vessel depending on the heat treatment conditions of the vessel in which the actual ruptured accident occurred, after the bursting test, the fracture pattern analysis had performed. The mechanical materials properties test using Instrumented Indentation Test had performed to confirm the mechanical properties for each heat treatment cases. Also, the fractography analysis and metallographic analysis had performed to find out the difference of each heat treatment case. By comparing normal vessel with abnormal vessel which have defect of heat treatment conditions in term of the bursting patterns and characteristics of containers using various forensic engineering methods, especially, it is possible to understand how important the heat treatment process is in the high pressure vessel unlike any product.

Heat Dissipation of Sealed LED Light Fixtures Using Pulsating Heat Pipe Technology

  • Kim, Hyung-Tak;Park, Hae-Kyun;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.64-71
    • /
    • 2012
  • An efficient cooling system is an essential part of the electronic packaging such as a high-luminance LED lighting. A special technology, Pulsating Heat Pipe (PHP), can be applied to improve cooling of a sealed, explosion-proof LED light fixture. In this paper, the characteristics of the pulsating heat pipes in the imposed thermal boundary conditions of LED lightings were experimentally investigated and a PHP device that works free of alignment angle was investigated for cooling of explosion-proof LED lights. Five working fluids of ethanol, FC-72, R-123, water, and acetone were chosen for comparison. The experimental pulsating heat pipe was made of copper tubes of internal diameter of 2.1 mm, 26 turns. A variable heat source of electric heater and an array of cooling fins were attached to the pulsating heat pipe. For the alignment of the heating part at bottom, an optimum charging ratio (liquid fluid volume to total volume) was about 50% for most of the fluids and water showed the highest heat transfer performance. For the alignment of the heating part on top, however, only R-123 worked in an un-looped construction. This unique advantage of R-123 is attributed to its high vapor pressure gradient. Applying these findings, a cooling device for an explosion-proof type of LED light rated 30 W was constructed and tested successfully.

상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막 (ITO Films Deposited by Sputter Method of Powder Target at Room Temperature.)

  • 김현후;이재형;신성호;신재혁;박광자
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF

복합봉재 압출에 의한 에너지 소산의 영향에 관한 연구 (A Study on the Effect of Energy Dissipation in Extruding Clad Rod)

  • 김창훈
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.56-64
    • /
    • 2006
  • Rapid progress in many branches of technology has led to a demand on new materials such as high strength light weight alloys, powdered alloys and composite materials. The hydrostatic extrusion is essentially a method of extruding a clad rod through a die. In order to investigate the effect of the process conditions such as friction heat, deformation and clad thickness on the clad extrusion process, viscoplastic finite element simulations were conducted. A specific model for theoretical analysis used in this study is The single scalar variable version of Hart's model. An experiment also has been carried out using 1.5MN hydrostatic extruder with variable speed ram, LVDT and load cell for comparison. It is found that the hydrostatic extrusion pressure considering the effect of heat dissipation in this theoretical work was closer to the experimental pressure than the isothermal hydrostatic extrusion pressure.

  • PDF

분말타겟의 dc 마그네트론 스퍼터에 의한 ITO박막의 특성 (Characteristics of ITO Films Deposited by dc Magnetron Sputter Using Powder Target)

  • 김현후;신성호;신재혁;박광자
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.427-431
    • /
    • 2000
  • ITO (indium tin oxide) thin films on PET (polyethylene terephthalate) and glass substrates have been deposited by a dc magnetron sputtering without heat treatments such as substrate heater and post heat treatment. Each sputtering parameter during the sputtering deposition is an important factor for the high quality of ITO thin films deposited on polymeric substrate. Particularly, the material, electrical and optical properties of as-deposited ITO oxide films are dominated by sputtering power, oxygen partial pressure and films thickness. As the experimental results, the XRD patters of ITO films are influenced by sputtering power and pressure. As the power and pressure are increased, (411) peak is grown suddenly. the electrical resistivity is also increased, as the sputteing power and pressure are increased. Transmittance of ITO thin films in visible light ranges is lowered with increasing the sputtering power and film thickness. Reflectance of ITO films in infia-red region is decreased, as the power and pressure is increased.

  • PDF

Performance Analysis and Optimal Design of Heat Exchangers Used in High Temperature and High Pressure System

  • Kim, Yang-Gu;Choi, Byoung-Ik;Kim, Kui-Soon;Jeong, Ji-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.19-25
    • /
    • 2010
  • A computational study for the optimal design of heat exchangers (HX) used in a high temperature and high pressure system is presented. Two types of air to air HX are considered in this study. One is a single-pass cross-flow type with straight plain tubes and the other is a two-pass cross-counter flow type with plain U-tubes. These two types of HX have the staggered arrangement of tubes. The design models are formulated using the number of transfer units ($\varepsilon$-NTU method) and optimized using a genetic algorithm. In order to design compact light weight HX with the minimum pressure loss and the maximum heat exchange rate, the weight of HX core is chosen as the object function. Dimensions and tube pitch ratio of a HX are used as design variables. Demanded performance such as the pressure loss (${\Delta}P$) and the temperature drop (${\Delta}T$) are used as constraints. The performance of HX is discussed and their optimal designs are presented with an investigation of the effect of design variables and constraints.