• Title/Summary/Keyword: light strength

Search Result 1,532, Processing Time 0.036 seconds

A STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO LIGHT-CURING GLASS IONOMER CEMENTS (광중합형 글라스아이오노머 시멘트와 복합레진과의 전단결합강도에 관한 연구)

  • Kim, Deok;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.447-459
    • /
    • 1994
  • The purpose of this study is to evaluate of shear bond strength of light-curing composite resin to light-curing glass ionomer cement. Composite resin and glass ionomer cement have been widely used as an esthetic filling materials in dental clinics. To achieve better clinical results, sandwich technic was developed with conpensating for disadvantages of these two materials. Especially, light-curing glass ionomer cement provided greately improved bonding strength of teeth or composite resin, and then excellent clinical results can be acquired. In this study, 6 commercial light-curing glass ionomer cements(3 commercial restorative materials : Fuji II LC, Variglass VLC, Vitremer, and 3 commercial lining materials : Fuji Lining LC, Baseline VLC, Vitrebond) were devided two groups. According to manufacturer's appointment, no surface treatment was referred to N groups. Supposing. of clinical practice, surface grinding with water spray at 320 grit sand paper, 40 seconds etching with 37% phosphoric acid, 20 seconds washing, 20 seconds air drying was referred to N groups. Totally 12 experimental groups were devided, and all 120 specimens from 10 specimens of each groups were made. After light-curing composite resin was bonded to light-curing glass ionomer cement, shear bond strength was tested by Instron universal testing machine between glass ionomer cement and composit resin. The data were analyzed statistically by Student's t-test and ANOVA. The obtained results were as follows; 1. In light-curing glass ionomer cement, restorative materials showed higher shear bond strength to composite resin than lining materials(p<0.05). 2. Variglass VLC of restorative material group and Baseline VLC of lining material group have highest shear bond strength to composite resin(p<0.001). 3. In light-curing glass ionomer cement, surface grinding and acid etching reduced shear bond strength to composite resin(p<0.001)}. 4. VGN group 1s highest shear bond strength to composite resin, VBE group is lowest shear bond strength to composite resin(p<0.001).

  • PDF

Effects of light direction and exposure times of plasma arc light on shear bond strength of metal brackets (Plasma arc light를 이용한 금속 브라켓의 부착시 광조사 방향과 중합시간이 전단결합강도에 미치는 영향)

  • Roh, Sang-Jeong;Lee, Hyun-Jung;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.429-438
    • /
    • 2004
  • The purpose of this study was to compare the effects of different light direction exposure times and setting times when using plasma arc light on shear bond strength of metal brackets. 240 extracted human premolars were randomly assigned to one of 16 groups Standardized brackets were bonded to enamel using different light curing units (Plasma arc light and Halogen light), exposure times (Plasma arc light 2. 4, 6 seconds and Halogen light 20 seconds). and light directions [Vertical direction [V] and Oblique direction [O]). 8 groups were tested after 5 minutes and the remaining 8 groups after 24 hours. The metal brackets were bonded with Transbond XT. Shear bond strength was measured by a universal testing machine. The results were as fellows: There were as differences between the shear bond strengths of the Vertical groups (V) and Oblique groups (O). regardless of exposure times and types of light curing units (p>0.05). The shear bond strength of the group with 2 seconds of plasma light were significantly lower than other exposure time groups (P<0.05). The shear bond strength tested after 5 minutes was lower than after 24 hours (p<0.05) The Adhesive Remment Index (ARI) score showed no statistically significant difference among the different groups. The results of this study suggested that the light direction of plasma arc light had no influence on the shear bond strength of metal brackets to enamel. and exposure times more than 4 seconds produced shear bond strengths similar to those Produced with a conventional halogen curing light.

Properties of High Strength Lightweight Self-Compacting Concrete (고강도 경량 자기충전콘크리트의 성능평가)

  • 최연왕;문대중;안성일;최욱;조선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.413-416
    • /
    • 2003
  • Experimental tests on the high strength self-compacting concrete with light-weight fine aggregate and light-weight coarse aggregate(LHSSC) were performed with slump-flow, reaching time to the slump-flow of 500mm, V-funnel dropping time and U-box difference level and compressive strength. LHSCC with light-weight fine aggregate of 75% and light-weight coarse aggregate of 100% was only satisfied with the property conditions of second self-compacting concrete(SCC), like as flowability, resistance to segregation and filling ability. The 28-day compressive strength of LHSCC indicated above 300kgf/$\textrm{cm}^2$ in all concrete mixtures, and it was increased to increase the replacement ratio of light-weight fine aggregate or to decrease the replacement ratio of light-weight coarse aggregate. Therefore, for satisfying the properties of fresh SCC and hardened concrete with above 350kgf/$\textrm{cm}^2$, it would expected that the replacement ratio of light-weight fine aggregate and light-weight coarse aggregate will be determined with 50~75% and 25~50%, respectively.

  • PDF

AN EXPERIMENTAL STUDY FOR SHEAR BOND STRENGTH OF COMPOISTE RESIN USING SEVERAL DENTIN BONDING AGENTS AND LIGHT CURED GLASS IONOMER CEMENT (상아질 접착제를 사용한 광중합 복합레진과 Glass Ionomer Cement의 전단 결합력에 관한 연구)

  • Kwon, Byung-Ryul;Lee, Jae-Ho;Choi, Hyung-Jun;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • The purpose of this study was to compare shear bond strength of composite resin using several dentin bonding agents and light cured glass ionomer cement(Fuji II LC). 40 Bovine primary anterior teeth were used for this experiment. Labial surface of teeth were flattened. It were divided into four groups. Each group was composed of 10 teeth. The material used for this experiment were Scotchbond Multipurpose-Z-100, Allbond 2-Aelitefil, Gluma-Pekalux, light cured glass ionomer cement(Fuji II LC). Each of the materials was applied to the exposed surfaces of 10 teeth by insertion into a cylindrical shaped matrix which is 3mm diameter and 3mm in height. The completed specimens were stored at $37^{\circ}C$ under 100% humidity for 24 hours : the shear bond strength of each material to dentin surface were measured with INSTRON universal testing machine. The results were as follows : 1. Shear bond strength to dentin surface increased in order of light cured glass ionomer cement(Fuji II LC), Gluma, Allbond 2, Scotchbond Multipurpose. 2. Between shear bond strength of light cured glass ionomer cement(Fuji II LC) and Allbond 2, there was statistical significace(p<0.05) 3. Between shear bond strength of light cured glass ionomer cement(Fuji II LC) and Scotchbond Multipurpose, between shear bond strength of Gluma and Scotchbond Multipurpose, there was statistical significance.(p<0.01) The shear bond strength of dentin bonding agents were higher than light cured glass ionomer cement. The reason is that materials and quality of dentin bonding agent were enhanced. Further investigation is necessary to improve shear bond strength of light cured glass ionomer cement.

  • PDF

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

Strength Characteristics of Light-Weighted Soils Mixed with EPS and Dredged Soils (준설토와 EPS를 혼합한 경량혼합처리토의 강도 특성)

  • 김수삼;김병일;한상재;신현영
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2002
  • Recycling of dredged soils as construction materials is experimently discussed in this paper. The strength of light-weighted soils(LWS) consisting of expanded polystyrene(EPS), dredged soils and cement is characterized by uniaxial and triaxial compression tests with varying initial water contents of dredged soils, the EPS volume and cement contents, and expanded ratio of EPS. Test results show that the strength of light-weighted soils increases with adding cement contents, whereas the strength increases with decreasing initial water contents of dredged soils and expanded ratio of EPS. It was, however, found that increasing the EPS volume makes a lower the strength of light-weighted soils.

Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam (경량기포혼합 준설토의 강도특성)

  • 박건태;김주철;윤길림;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

The shear bond strength and adhesive failure pattern in bracket bonding with different light-curing methods (브라켓 접착시 광중합방식에 따른 전단결합강도와 파절양상 비교)

  • Shin, Jai-Ho;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.333-342
    • /
    • 2004
  • The purpose of this study was to evaluate the clinical effectiveness of a plasma arc light and light emitting diode (LED), compared with shear bond strength and the failure pattern of brackets bonded with visible light in direct bonding. Brackets were bonded with Transbond XT to 60 human premolars embedded in the resin blocks according to different light-curing methods. Then, the shear bond strength of each group was measured using a universal testing machine (Instron) and the adhesive failure pattern after debonding was visually examined by light microscope. The results were as follows: 1. The shear bond strength showed no significant difference between the visible light and light emitting diode, but the plasma arc light exhibited a significantly lower shear bond strength compared with the visible light and light emitting diode. 2. In the visible light and light emitting diode, adhesive failure patterns were similar. Bond failure occurred more frequently at the enamel-adhesive interface. 3. The bonding failure of brackets bonded with plasma arc light occurred more frequently at the bracket-adhesive interface. The results of this study suggest that plasma arc light, light emitting diode and visible light are all clinically useful in the direct bonding of orthodontic brackets.

Effect of Timing of Light Curing on the Shear Bond Strength of Three Self-adhesive Resin Cements

  • Yoo, Yeon-Kwon;Kim, Sung-Hun;Ryu, Jae-Jun;Ryu, Jae-Jun
    • Journal of Korean Dental Science
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Objectives. The objectives of this study were: 1) to compare the effect of varying timing of light curing on shear bond strength, and; 2) to compare the shear bond strength of three self-adhesive cements. Materials and methods. A total of 72 extracted non-carious teeth were divided into 24 for Unicem tests, 24 for Maxcem tests, and 24 for Biscem tests; they were assigned 3 * 2 subgroups of 12 teeth each. The specimens were prepared as follows: 1) The calculus and periodontal ligament were removed from the teeth; 2) The teeth were stored in normal saline; 3) The occlusal enamel of each tooth was removed using high-speed coarse diamond burs under water cooling, and; 4) Finally, the teeth were flattened by 600-grit silicone carbide paper disks. Resin blocks were adhered using either Unicem, Maxcem, or Biscem. Light curing timing was divided into two groups: U10, M10, and B10 were exposed to light after 10 seconds, and; U150, M150, and B150 on the other side were exposed to light after 150 seconds. Shear bond strength was measured by a Universal testing machine with cross head speed of 1mm/min. T-test and One way ANOVA were used for the statistical analysis of data. Results. The shear bond strength of U150 was not significantly higher than that of U10 (U150: 20.55.7Mpa, U10: 18.73.80Mpa). On the other hand, the shear bond strength of M150 was significantly higher than that of M10. The shear bond strength of B150 was also significantly higher than that of B10 (M150:14.45.7Mpa, M10: 9.94.2Mpa, B150: 24.38.3Mpa, B10: 17.27.3Mpa). When the light curing timing was 10sec after bonding, the shear bond strength of Unicem was highest; the shear bond strength of Biscem was highest when the light curing timing was 150sec after bonding (U10: 18.73.80Mpa, B150: 24.38.3Mpa). Significance. Since Unicem is less sensitive based on light curing timing, dentists seem to use it without considering the light curing timing. Maxcem showed the lowest bonding strength (especially M10). Thus, when using Maxcem, dentists need to delay the light curing after adhesion.

  • PDF