• Title/Summary/Keyword: light spectra

Search Result 653, Processing Time 0.025 seconds

Ebert-Fastie spectrograph using the Transformable Reflective Telescope kit

  • Ahn, Hojae;Mo, Gyuchan;Jung, Hyeonwoo;Choi, Junwhan;Kwon, Dou Yoon;Lee, Minseon;Kim, Dohoon;Lee, Sumin;Park, Woojin;Lee, Ho;Park, Kiehyun;Kim, Hyunjong;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.4-40.4
    • /
    • 2020
  • Kyung Hee university invented the Transformable Reflective Telescope (TRT) for optical experiment and education. The TRT kit can transform into three optical configurations from Newtonian to Cassegrain to Gregorian by exchanging the secondary mirror. We designed the Ebert-Fastie spectrograph as an extension of the TRT kit. The primary mirror of the TRT kit serves as both collimator and camera lens, and the reflective grating as the dispersing element is placed along the optical axis of the primary mirror. We designed and fabricated the grating holder and the source units using 3D printer. Baffle was also fabricated to suppress the stray light, which was reduced by 83%. The spectrograph can observe the optical wavelength range (4000Å~7000Å). Measured resolving power (R=λ/Δλ) was ~700 with slit width of 0.18mm. The spectrograph is optimized for f/24, and the spectral pixel scale is 0.49Å/pixel with Canon 550D detector. We present the sample spectra of discharged Ne, Ar and Kr gases. The flexible setting and high performance make this spectrograph a useful tool for education and experiment.

  • PDF

Research on the Applicability of Target-detection Methods for Land-based Hyperspectral Imaging

  • Qianghui Wang;Bing Zhou;Wenshen Hua;Jiaju Ying;Xun Liu;Lei Deng
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.282-299
    • /
    • 2024
  • Target detection (TD) is a research hotspot in the field of hyperspectral imaging (HSI). Traditional TD methods often mine targets from HSIs under a single imaging condition, without considering the influence of imaging conditions. In fact, the spectra of ground objects in HSIs are uncertain and affected by the imaging conditions (weather, atmospheric, light, time, and other angle conditions including zenith angle). Hyperspectral data changes under different imaging conditions. Therefore, the detection result for a single imaging condition cannot accurately reflect the effectiveness of the detection method used. It is necessary to analyze the performance of various detection methods under different imaging conditions, to find a more applicable detection method. In this paper, we study the performance of TD methods under various land-based imaging conditions. We first summarize classical TD methods and evaluation methods. Then, the detection effects under various imaging conditions are analyzed. Finally, the concepts of the stability coefficient (SC) and effective area under the curve (EAUC) are proposed to comprehensively evaluate the applicability of detection methods under land-based imaging conditions, in terms of both detection accuracy and stability. This is conducive to our selection of detection methods with better applicability in land-based contexts, to improve detection accuracy and stability.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Reproductive Growth and Competitive Ecology of Arrowhead(Sagittaria trifolia L.) - 1. Growth and Tuber Formation of Arrowhead under Several Environmental Factors (벗풀(Sagittaria trifolia L.)의 번식생장(繁殖生長) 및 경합생태(競合生態) - 1. 벗풀의 번식생장(繁殖生長))

  • Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.138-150
    • /
    • 1993
  • Experiments were carried out to understand how much do the environmental factors affect growth and tuber formation of arrowhead, Sagittaria trifolia L. The more the light transmittance decreased, the more the numbers of leaves and floral axes decreased. The dry matter weight of tops and the number and the fresh weight of formated tuber were significantly different between the light transmittance of more than 50% and that of less than 30% at the 5% level of DMRT. Plant height, number and width of leaves, and number of floral axis were affected by the Light spectra. And the degree of their effects on growth of arrowhead was different form the light spectrum. The natural light and the clear cellophane film were the most effective to increase the number and the fresh weight of formated tuber and the green spectrum was the least effective to do those. Plant height grown at 0-5cm water depth was shorter than that at 10-20cm water depth. The deeper the water depth was, the lower the leaves number was. The fresh weight and the number of arrowhead tuber were most produced at 0cm water depth and theose were least at 20cm water depth. The shoot growth and the tuber formation of arrowhead was much increased with increase of the application rate of fertilizer. The difference of the transplanted tuber size was not affected at the shoot growth, but tuber formation of arrowhead was increased with increase of the transplanted tuber size. From viewing the effect of temperature after rice heading, the shoot growth and the tuber formation at $35^{\circ}C$ were also higher than those at $25^{\circ}C$.

  • PDF

1SWASP J093010.78+533859.5: A Possible Hierarchical Quintuple System

  • Koo, Jae-Rim;Lee, Jae Woo;Lee, Byeong-Cheol;Kim, Seung-Lee;Lee, Chung-Uk;Hong, Kyeongsoo;Lee, Dong-Joo;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2013
  • Among quadruples or higher multiplicity stars, only a few binary systems have been discovered. They are important targets to understand the formation and evolution of multiple stellar systems because we can obtain accurate stellar parameters from photometric and spectroscopic studies. We present the observational results of this kind of rare object 1SWASP J093010.78+533859.5, for which the doubly eclipsing feature had been detected previously from the SuperWASP photometric archive. Individual PSF photometry for two objects with a separation of about 1.9 arcsec was performed for the first time in this study. Our time-series photometric data show that the brighter object A is an Algol-type detached eclipsing binary with an orbital period of 1.3 days and the fainter B is a W UMa-type contact eclipsing binary with a period of 0.23 days. Using the high-resolution optical spectra, we obtained well-defined radial velocity variations of the system A. Furthermore, stationary spectral lines were detected and should have originated from the other stellar component, which was confirmed by the third object contribution from the light curve analysis. No spectral feature of the system B was detected, probably due to its faintness. We obtained the binary parameters and the absolute dimensions from each light curve synthesis. The primary and secondary components of the system A have a spectral type of K1 and K5 main sequences, respectively. Two components of system B have nearly the same type of K3 main sequence. Light variations at out of eclipses were appeared in both systems, interpreting as the effect of stellar spots on these late spectral type stars. We estimated the distances to the systems A and B individually. They may have similar distances of about 70 pc and seem to be gravitationally bound with a separation of about 130 AU. In conclusion, we suggest that 1SWASP J093010.78+533859.5 is a quintuple stellar system with a hierarchical structure of a triple system A(ab)c and a binary system B(ab).

  • PDF

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds (악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가)

  • Jo, Wan-Kuen;Shin, Myeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.965-974
    • /
    • 2009
  • This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.

Studies on Photosensitive Polymers (X). Studies on Photosensitivity and Spectral Sensitivity of Naphthoquinone-1,2-diazide-5-sulfonyl Esters (感光性 樹脂에 關한 硏究 (第10報). Naphthoquinone-1,2-diazide-5-sulfonyl Esters의 感光性과 分光感度)

  • Shim Jyong Sup;Kang Doo Whan
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 1975
  • Photosensitive properties of naphthoquinone-1,2-diazide-5-sulfonyl esters (PGND, BEND and PVAND) of polyglyceryl phthalate(PG), bisphenol A-epichlorohydrin condensate(BE) and polyvinyl alcohol(PVA) were investigated by the change of solubility before and after exposing to light. Various samples coated on glass or quartz plates were exposed to light under various conditions and steeped in aqueous alkali solution, and then the yield of residual film(W/W0) was determined. The yield of residual film, which was closely related to the sensitivity of the film, was affected by the degree of polymerization of the backbone resin, sensitizers and their concentration. In polymer homologs, the sensitivity was dependent on the degree of polymerization(the higher, the better). And also, it was most effective when 5 % of sensitizers to esters was used. The minimum exposed time was 0.6 min. for PGND-1, 1.0 min. for BEND-1, and 3.0 min. for PVAND-1. Most effective sensitizers for PGND, BEND and PVAND among those used here were benzanthrone, 5-nitroacenaphthene and picramide, respectively. The spectral sensitivities of PGND, BEND and PVAND were examined by comparing their spectrograms with UV-spectra in a solid state. Also, the sensitization and spectral sensitivity of the above polymers were studied. All the polymers containing the sensitizers showed optical sensitization. From the fact that in either case of sensitized or unsensitized sample, the ranges of absorption-maximum wave length were almost consistent with sensitivity maximum wave length, it was proved that the light absorbed by a sample served efficiently for photochemical reactions. Benzanthrone was found to be an excellent sensitizer for PGND.

  • PDF

Effects of Water Activity and Light on the Oxidation of Carrot Carotenoids (당근 카로티노이드의 자동산화에 미치는 수분활성도 및 광선의 영향)

  • Song, Eun-Seung;Kim, Hae-Gyoung;Song, Yeong-Ok;Jeon, Yeong-Soo;Cheieh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.775-779
    • /
    • 1993
  • The effects of water activity and light on the oxidation of carotenoid were studied using both the model systems of carrot lipids and freeze dried carrot. Autoxidation of crude lipids from the freeze dried carrot and the stability of carotenoids in controlled systems varing water activities and/or lights were examined. The degree of autoxidation of crude lipid stored at $30^{\circ}C$ for 16 days was significant(p< 0.05) and 71.8% destruction of carotenoid in the crude lipids were observed. When the powdered solid models of freeze dried carrot were stored at $30^{\circ}C$ for 35 days under various water activities and the presence of light, the maximum stability of carotenoid was found at $a_{w}$ 0.42 and the damaging effect of lights on the stability of carotenoid was significant (p<0.05). The absoprtion spectra of carotenoids changed according to the degree of oxidation, but shifts of the maximum wavelength was not observed.

  • PDF

Development of Nondestructive Sorting Method for Brown Bloody Eggs Using VIS/NIR Spectroscopy (가시광 및 근적외선 전투과 스펙트럼을 이용한 갈색 혈란 비파괴선별 방법 개발)

  • Lee, Hong-Seock;Kim, Dae-Yong;Kandpal, Lalit Mohan;Lee, Sang-Dae;Mo, Changyeun;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to $30^{\circ}$, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.