• Title/Summary/Keyword: light scanner

Search Result 139, Processing Time 0.027 seconds

A Study On Bar-Code Signal Processing System (바-코드 신호처리 시스템에 관한 연구)

  • Ihm, J.T.;Eun, J.J.;Park, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.61-63
    • /
    • 1987
  • In this paper, we develope a system which can perform signal processing for bar-code laser scanner. This system is composed of optical detector and preprocessor. The former detects the diffused light and converts it into TTL lebel output. The latter discriminator valid data from various raw data and transmits data to micro-processor. The preprocessor consists of edge transition detector, latch signal generator, module counter, register array, adder array, and buffer memory control circuit etc..

  • PDF

Development of swiver joint on hydraulic machine (유압시험기 swivel joint의 개발)

  • Shin, H.G.;Kim, H.Y.;Bang, H.I.;Kim, S.B.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The swivel joint is an important part in hydraulic machine. The analysis on the material was made using the EDAX method to localize the swivel joint. Also, the modeling and design drawing were finalized with application of 3 dimensional measurement and structure analysis. The prototype product based on design drawing was made with cutting and grinding process. No abnormalities were found in the prototype product through the durability test and measurement. The localized swivel joint with light weight, price reduction and diversification was developed in this study.

Determination and classification of intraoral phosphor storage plate artifacts and errors

  • Deniz, Yesim;Kaya, Seher
    • Imaging Science in Dentistry
    • /
    • v.49 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • Purpose: The aim of this study was to determine the reasons and solutions for intraoral phosphor storage plate (PSP) image artifacts and errors, and to develop an appropriate classification of the artifacts. Materials and Methods: This study involved the retrospective examination of 5,000 intraoral images that had been obtained using a phosphor plate system. Image artifacts were examined on the radiographs and classified according to possible causative factors. Results: Artifacts were observed in 1,822 of the 5,000 images. After examination of the images, the errors were divided into 6 groups based on their causes, as follows: images with operator errors, superposition of undesirable structures, ambient light errors, plate artifacts (physical deformations and contamination), scanner artifacts, and software artifacts. The groups were then re-examined and divided into 45 subheadings. Conclusion: Identification of image artifacts can help to improve the quality of the radiographic image and control the radiation dose. Knowledge of the basic physics and technology of PSP systems could aid to reduce the need for repeated radiography.

Infrared Thermographic Imaging in Patients with Alopecia (탈모 환자의 적외선 체열 진단상 안면부 체열 특성)

  • Yi Tae-Hoo;Moon Jung-Bae;An Kyung-Eh;Lee Hye-Jung
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.244-252
    • /
    • 2006
  • Objectives : To examine any potential relationships between the types of alopecia and the facial heat distribution in patients with alopecia. Methods : 183 patients with alopecia participated in this study to provide facial heat distribution measured by the Infrared Thermography Scanner (ITS, Nec San-ei Instruments Ltd, Japan). The thermography scan was used in a light- and heat-protected room after 20 minutes' of rest. 1.5m of distance was maintained between the patients and the scanner. Results : Specificity in the type of facial heat distribution was found as follow. 1. Types of facial heat distribution can be classified as T-type and diffused patterns. 2. There was a significant difference in the pattern of facial heat distribution among different types of alopecia (p=0.002): facial heat distribution appeared T-type in androgenic alopecia, alopecia areata, and telogen effluvium (71.3%, 85.7%, 70.4%), whereas diffused pattern was dominant in seborrheic alopecia (55.6%). 3. There was a significant difference in the pattern of facial heat distribution between men and women (p<0.001) : While the T-type and diffused type appeared equally in men (50.6% : 49.4%), T-type was dominant in women (88.0% vs. 12.0%). Conclusions : We conclude that the pattern of facial heat distribution differs depending on the types of alopecia and gender. These differences may provide useful information for diagnosis and clinical therapy for this population.

  • PDF

Four-Dimensional Computed Tomography for Gated Radiotherapy: Retrospective Image Sorting and Evaluation

  • Lim, Sang-Wook;Park, Sung-Ho;Back, Geum-Mun;Ahn, Seung-Do;Shin, Seong-Soo;Lee, Sang-Wook;Kim, Jong-Hoon;Choi, Eun-Kyuong;Kwon, Soo-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.71-74
    • /
    • 2005
  • To introduce the four-dimensional computed tomography (4DCT, Light Speed RT, General Electric, USA) scanner newly installed in our department and evaluate its feasibility for gated radiotherapy. Respiratory signal measured by real-time position management (RPM$^{\circledR}$, Varian Medical, USA) was recorded in synchronization with the 4DCT scanner. 4DCT data were acquired in axial cine mode and sorted retrospective image based on respiratory phase. PTVs delineated from helical CT and 4DCT images were compared. The PTV delineated from conventional helical CT images was 2 cc larger than that from 4DCT images. Dose in PTV of the plan from retrospective CT was 99.3% (minimum=72.0%, maximum=106.5%) and that of helical CT plan was 95.2% (minimum=24.1%, maximum=106.4%) of prescribed dose. Comparing with DVHs of both plan, the coverage for 4CDT plan was 3.7% improved. It is expected that 4DCT could improve tumor control and reduce radiation toxicity for liver cancer.

  • PDF

Low-Complexity Handheld 3-D Scanner Using a Laser Pointer (단일 레이저 포인터를 이용한 저복잡도 휴대형 3D 스캐너)

  • Lee, Kyungme;Lee, Yeonkyung;Park, Doyoung;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.458-464
    • /
    • 2015
  • This paper proposes a portable 3-D scanning technique using a laser pointer. 3-D scanning is a process that acquires surface information from an 3-D object. There have been many studies on 3-D scanning. The methods of 3-D scanning are summarized into some methods based on multiple cameras, line lasers, and light pattern recognition. However, those methods has major disadvantages of their high cost and big size for portable appliances such as smartphones and digital cameras. In this paper, a 3-D scanning system using a low-cost and small-sized laser pointer are introduced to solve the problems. To do so, we propose a 3-D localization technique for a laser point. The proposed method consists of two main parts; one is a fast recognition of input images to obtain 2-D information of a point laser and the other is calibration based on the least-squares technique to calculate the 3-D information overall. To verified our method, we carry out experiments. It is proved that the proposed method provides 3-D surface information although the system is constructed by extremely low-cost parts such a chip laser pointer, compared to existing methods. Also, the method can be implemented in small-size; thus, it is enough to use in mobile devices such as smartphones.

Analysis of deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a DLP printer (DLP 프린터로 출력한 임시의치용 전악 인공치아의 후경화에 따른 변형 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • Purpose: This study aimed to analyze deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a digital light processing (DLP) printer. Methods: An edentulous model was prepared and an occlusal rim was produced. The edentulous model and occlusal rim were scanned using a model scanner. A complete denture was designed using a dental computer-aided design, and the denture base and artificial tooth were separated. Ten complete arch artificial teeth were printed using a 3D printer (DLP). Complete arch artificial teeth was classified into the following three groups: a group no post-curing (NC), a group with 10 minutes post-curing (10M), and a group with 20 minutes post-curing (20M). Specimens were scanned using a model scanner. The scanned data were overlapped with the reference data. Statistical analysis was performed using one-way ANOVA analysis of variance, Kruskal-Wallis test, and Mann-Whitney U test (α=0.05). Results: Regarding the overall deviation of complete arch artificial teeth, the NC group showed the lowest mean deviation of 111.13 ㎛ and the 20M group showed the highest mean deviation of 131.03 ㎛. There were statistically significant differences among the three groups (p<0.05). Conclusion: The complete arch artificial tooth showed deformation due to post-curing. In addition, the largest shrinkage deformation was observed at 10 minutes of post-curing, whereas the least deformation was observed at 20 minutes.

Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Dong-Yeon;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • PURPOSE. This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS. A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P<.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION. Interim crowns with 10-minute post-curing showed high accuracy.

Evaluation of marginal and internal accuracy of provisional crowns manufactured using digital light processing three-dimensional printer (DLP 방식의 3D 프린터로 제작된 임시 보철물의 변연 및 내면 정확도 평가)

  • Noh, Mi-Jun;Lee, Ha-Bin;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.44 no.2
    • /
    • pp.31-37
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the accuracy of provisional crowns manufactured using a milling machine and a digital light processing (DLP) printer. Methods: A full-contour crown was designed using computer-aided design software. Provisional crowns of this design were manufactured using a milling machine and using a DLP three-dimensional (3D) printer (N=20). The provisional crowns were digitized with an extraoral scanner, and 3D deviation analysis was applied to the scanned data to confirm their accuracy. An independent t-test was performed to detect the significant differences, and the Kolmogorov-Smirnov test was used for analysis (α=0.05). Results: No significant differences were found among the precision of marginal surface between the printed and milled crowns (p=0.181). The trueness of marginal and internal surfaces of the milled crowns were statistically higher than those of the printed crowns (p=0.024, p=0.001; respectively). Conclusion: The accuracy of provisional crowns manufactured using a milling machine and a 3D printer differed significantly except with regards to the precision of the internal surface. However, all the crowns were clinically acceptable, regardless of the manufacturing method used.

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.