• Title/Summary/Keyword: light reflectivity

Search Result 96, Processing Time 0.022 seconds

Measurement of Dynamic Strain of Structures Using a Gold-deposited EFPI (금 증착된 광섬유 외부 패브리-페로 간섭( EFPI ) 센서를 이용한 구조물의 동적 변형률 측정)

  • Kim, Dae-Hyeon;Gang, Hyeon-Gyu;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.52-58
    • /
    • 2002
  • Measurment of dynamic strain is important to monitor structural integrity. In this paper, the new type of EFPI is proposed to measure the dynamic strain. The second reflecting surface of fiber in this new sensor is deposited gold on to increase its reflectivity. So, it is called the gold-deposited EFPI (G-EFPI) in this paper. In order to explain the principle of measurement of the dynamic strain, two models for the loss of intensity are proposed and an experiment is performed. If a cavity between two reflecting surface increases, the loss of the light that passes through the cavity increases, causing a subsequent decrease in the output intensity of the sensor. Conversely, if the cavity decreases, the amount of loss decreases and the output intensity increases. Also the optimal length of the cavity is proposed to manufacture the G-EFPI with high sensitivity. Finally, the dynamic strainof a composite specimen was measured successfully using the G-EFPI.

A study of submicron particle deposition onto cylinder surface in nonisothermal two-phase flow (비등온 이상유동에서 원통벽면으로의 미소입자 부착에 관한 연구)

  • 정상현;김용진;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.828-836
    • /
    • 1987
  • The inclusion of thermophoresis in particle deposition studies has often been treated separately from deposition due to flow characteristics. Also previously reported experimental results on thermophoresis have been studied in the regions of relatively small temperature gradients. In this study, using real-time laser light reflectivity method, we measured the angular dependence of the deposition rates of particles of the cylindrical collector surface, which immerged in laminar flow of a hot gas suspension of small particles. And we extended the previous narrowband results of thermophoretic deposition rates to the regions of large temperature gradients between the hot gas stream and the collector surface. Based on the obtained data, the cylinder's forward stagnation-point region is considerably enriched in particle 'phase' density owing to the compressibility effect, which leads to locally enhanced deposition while the downstream region from the stagnation point inertial force acts in the opposite direction, which tends to centrifuge particles away from the wall, thus the local deposition rates by thermophoresis are reduced.

Two-dimensional model simulation for reflectance of single crystalline silicon solar cell (단결정 실리콘 태양전지 2차원 모델의 반사율 시뮬레이션)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.237-242
    • /
    • 2012
  • At present, crystalline solar cells take up a significant percentage of the solar industry. The ways of increasing the efficiency of crystalline solar cell are texturing and AR(Anti-Reflection) coating, and the purpose of these technologies is to increase the amount of available light on the solar cell by reducing the reflectivity. The reflectance of crystalline silicon solar cell combined with such technologies will be able to predict using the proposed simulation in this paper. The simulation algorithm was made using MATLAB, and it is a combination of the theories of reflection in textured wafer and in anti-reflection coated wafer. The simulation results were divided into three wavelength band and were compared with actual reflectance measured by a spectrometer. The wavelength band from 300 to 380 was named ultraviolet region and the wavelength band from 380 to 780 is named visible region. Finally, the wavelength band from 780 to 1200 named infrared region. When compared with measured reflection data, the simulation results had a small error from 0.4 to 0.5[%] in visible region. The error occurred in the rest two regions is larger than visible region. The extreme error occurred the infrared region is due to internal reflection effect, but in the ultraviolet region, the rationale on reduction phenomenon of reflectance occurred in small range did not proved. If these problem will be solve, this simulation will have high reliability more than now and be able to predict the reflectance of solar cells.

  • PDF

The fabrication and application of semiconductor laser diode for optical sensor (광센서용 반도체레이저의 제작 및 적용)

  • 김정호;안세경;김동원;조희제;배정철;홍창희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.271-274
    • /
    • 2002
  • In this study, we fabricated the semiconductor laser for optical sensor with 1.55${\mu}{\textrm}{m}$wavelength region. In order to suppress lasing oscillation and to reduce the reflectivity, the devices of bending type were designed and fabricated. Their output power were 1.6㎽ at a pulse drive current of 100㎃. When the fabricated device was applied to optical fiber gyroscope, the output power of optical fiber was 540㎻ at a CW drive current of 100㎃, the full width at half maximum spectral width was 53nm. And the random-walk coefficient was measured to be 2.5$\times$10­$^3$deg/√hr, the gyro output drift was also found to be 0.3 deg/hr. So we confirmed the possibility of application to use for light source of optical fiber gyroscope.

  • PDF

An experimental study of particle deposition from high temperature gas-particle flows (고온의 기체 입자 유동으로부터 입자부착 현상에 관한 실험적 연구)

  • 김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.501-508
    • /
    • 1987
  • Experimental studies of particle (TiO$\_$2/) deposition from the laminar hot gas particle flow (about 1565K) onto the cold wall surface (about 1215K-1530K) were carried out by the 'real time' laser light reflectivity method (LLRM) and the photographs of scanning electron microscope(SEM). The LLRM was used for the measurement of thermophoretic deposition rates of small particles (d$\_$p/<3.mu.m), and the photographs of SEM were used for determining what factors control the collection of particles having diameters ranging from 0.2 to 30 microns. Two phenomena are primarily responsible for transport of the particles across the laminar boundary layers and deposition: (1) particle thermophoresis (i.e. particles migration down a temperature gradient), and (2) particle inertial impaction, the former effect being especially larger factor of the particle deposition in its size over the range of 0.2 to 1 microns. And also, this study indicates that thermophoresis can be important for particles as large as 15 microns. Beyond d$\_$p/=16.mu.m, this effect diminishes and the inertial impaction is taken into account as a dominant mechanism of particle deposition. The results of present experiments found to be in close agreement with existing theories.

Feasibility study on the development of Liquid crystal-optical fiber temperature sensor for minimal invasive laserthermia (LC(Liquid crystal)-광섬유를 이용한 최소 침습적 레이저 온열 치료용 온도 측정 센서의 개발을 위한 기초 연구)

  • Lee, Bong-Soo;Hwang, Young-Muk;Chung, Soon-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.225-230
    • /
    • 2003
  • Nowadays, laserthermia is widely used to treat malignant tumors with generating heat as the one of minimal invasive surgeries. Generally, the laserthermia probe system consists of the fiber-optic laser and light guides, image guide and temperature sensor. It is very important to measure the temperature of treating tumor and make a stable temperature ($42{\sim}43^{\circ}C$) during the treating time. Therefore, laserthermia probe needs temperature sensor which can measure it exactly and fast. In this study, to develop a new type of temperature sensor with LC(liquid crystal) and optical fiber, the reflectivity of LC according to the temperature changes are measured. Also, the relationships are derived from the results.

Computer Simulation for Gradual Yellowing of Aged Lens and Its Application for Test Devices

  • Kim, Bog G.;Han, Jeong-Won;Park, Soo-Been
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.344-349
    • /
    • 2013
  • This paper proposes a simulation algorithm to assess the gradual yellowing vision of the elderly, which refers to the predominance of yellowness in their vision due to aging of the ocular optic media. This algorithm employed the spectral transmittance property of a yellow filter to represent the color appearance perceived by elderly people with yellow vision, and modeled the changes in the color space through a spectrum change in light using the yellow filter effect. The spectral reflectivity data of 1269 Munsell matte color chips were used as reference data. Under the standard conditions of a D65 illuminant and a $10^{\circ}$ observer of 1964 CIE, the spectrum of the 1269 Munsell colors were processed through the yellow filter effect to simulate yellow vision. Various degrees of yellow vision were modeled according to the transmittance percentage of the yellow filter. The color differences before and after the yellow filter effect were calculated using the DE2000 formula, and the color pairs were selected based on the color difference function. These color pairs are distinguishable through normal vision, but the color difference diminishes as the degree of yellow vision increases. Assuming 80% of yellow vision effect, 17 color pairs out of $(1269{\times}1268)/2$ pairs were selected, and for the 90% of yellow vision effect, only 3 color pairs were selected. The result of this study can be utilized for the diagnosis system of gradual yellow vision, making various types of test charts with selected color pairs.

Design of ToF-Stereo Fusion Sensor System for 3D Spatial Scanning (3차원 공간 스캔을 위한 ToF-Stereo 융합 센서 시스템 설계)

  • Yun Ju Lee;Sun Kook Yoo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.134-141
    • /
    • 2023
  • In this paper, we propose a ToF-Stereo fusion sensor system for 3D space scanning that increases the recognition rate of 3D objects, guarantees object detection quality, and is robust to the environment. The ToF-Stereo sensor fusion system uses a method of fusing the sensing values of the ToF sensor and the Stereo RGB sensor, and even if one sensor does not operate, the other sensor can be used to continuously detect an object. Since the quality of the ToF sensor and the Stereo RGB sensor varies depending on the sensing distance, sensing resolution, light reflectivity, and illuminance, a module that can adjust the function of the sensor based on reliability estimation is placed. The ToF-Stereo sensor fusion system combines the sensing values of the ToF sensor and the Stereo RGB sensor, estimates the reliability, and adjusts the function of the sensor according to the reliability to fuse the two sensing values, thereby improving the quality of the 3D space scan.

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles (유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조)

  • Lee, Chongmin;Kim, Jiwoong;Chang, Hankwon;Roh, Ki-Min;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.78-82
    • /
    • 2015
  • Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.

Fabrication of an Oxide-based Optical Sensor on a Stretchable Substrate (스트레처블 기판상에 산화물 기반의 광센서 제작)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.79-85
    • /
    • 2022
  • Recently, a smartphone manufactured on a flexible substrate has been released as an electronic device, and research on a stretchable electronic device is in progress. In this paper, a silicon-based stretchable material is made and used as a substrate to implement and evaluate an optical sensor device using oxide semiconductor. To this end, a substrate that stretches well at room temperature was made using a silicone-based solution rubber, and the elongation of 350% of the material was confirmed, and optical properties such as reflectivity, transmittance, and absorbance were measured. Next, since the surface of these materials is hydrophobic, oxygen-based plasma surface treatment was performed to clean the surface and change the surface to hydrophilicity. After depositing an AZO-based oxide film with vacuum equipment, an Ag electrode was formed using a cotton swab or a metal mast to complete the photosensor. The optoelectronic device analyzed the change in current according to the voltage when light was irradiated and when it was not, and the photocurrent caused by light was observed. In addition, the effect of the optical sensor according to the folding was additionally tested using a bending machine. In the future, we plan to intensively study folding (bending) and stretching optical devices by forming stretchable semiconductor materials and electrodes on stretchable substrates.