• Title/Summary/Keyword: light precipitation

Search Result 165, Processing Time 0.032 seconds

Multi-scale agglomerates and photocatalytic properties of ZnS nanostructures

  • Man, Min-Tan;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.267.2-267.2
    • /
    • 2016
  • Semiconductor photo-catalysis offers the potential for complete removal of toxic chemicals through its effective and broad potential applications. Various new compounds and materials for chemical catalysts were synthesized in the past few decades. As one of the most important II-VI group semiconductors, zinc sulfide (ZnS) with a wide direct band gap of 3.8 eV has been extensively investigated and used as a catalyst in photochemistry, environmental protection and in optoelectronic devices. In this work, the ZnS films and nanostructures have been successfully prepared by wet chemical method. We show that the agglomerates with four successive scales are always observed in the case of the homogeneous precipitation of zinc sulfide. Hydrodynamics plays a crucial role to determine the size of the largest agglomerates; however, other factors should be invoked to interpret the complete structure. In addition, studies of the photocatalytic properties by exposure to UV light irradiation demonstrated that ZnS nanocrystals (NCs) are good photo-catalysts as a result of the rapid generation of electron-hole pairs by photo-excitation and the highly negative reduction potentials of excited electrons. A combination of their unique features of high surface-to volume ratios, carrier dynamics and rich photo-catalytic suggests that these ZnS NCs will find many interesting applications in semiconductor photo-catalysis, solar cells, environmental remediation, and nano-devices.

  • PDF

UHF Wind Profiler Calibration Using Radar Constant (레이더 상수를 이용한 UHF 윈드프로파일러 표준화)

  • Lee, Kyung Hun;Kwon, Byung Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.819-826
    • /
    • 2020
  • The UHF band wind profiler radars of the Korea Meteorological Administration (KMA), which produces the vertical profile of the wind, need to be calibrated for better performance. The capabilities of the radar in detecting even light precipitation were used for the calibration of which reference takes the hourly series of ground rainfall rate measured by a rain gauge at the radar site. This calibration must be renewed regularly according to the methodology implemented in this work since errors occur on the wind vectors in the clear sky without reflectivity calibration. Comparing the wind by wind profiler with that by radiosonde, the optimal radar constant contributed to the improvement of wind accuracy.

The Development of PHosphor Screen Formation For Oscilloscope Using Screen Printing Method (스크린 인쇄법을 이용한 오실로스코프용 형광막 제조 기술 개발)

  • Lee, Mi-Young;Kim, Young-Bea;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2004
  • The CRT(cathode ray tube) in oscilloscope consists of an electron gun, horizontal vertical deflection system and a phosphor screen. When the electron beam strikes the phosphor screen, the phosphor generates light. The phosphor screen has formed by CRT precipitation method. But, this method has some defects that are complex process, low yield, much consumption of raw-material, dirty working environment, waste problem, require of high cost. Moreover phosphor for oscilloscope used at present has been imported from Japan. Therefore developments of new phosphor and new method(the screen printing) top form phosphor screen for oscilloscope are required to improve these matters. This study was developed novel method(the screen printing) to form the phosphor screen for oscilloscope used new phosphor. This screen printing method has advantages of simple process, high yield, clean working environment, saving raw material and running-cost.

  • PDF

Analyses of Additives Applied in a Polycarbonate (폴리카보네이트에 사용된 첨가제의 분석)

  • Kim, Seog-Jun
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.282-290
    • /
    • 2000
  • In this study, polymer additives were extracted and separated by Soxhlet extraction method and the dissolution-precipitation method from a polycarbonate (optical grade) which completely absorbed UV light below 390 nm. Analytical techniques such as UV-Vis spectroscopy, FT-IR, and HPLC were applied to analyze additives in polycarbonate. Separated materials from the polycarbonate may be a complex mixture containing additives such as UV stabilizer, antioxidants (primary and secondary), monomers, and oligomers. Several compounds such as bisphenol A, Irganox 1010, and Cyasorb UV-5411 were identified by chromatograms and UV spectra obtained from RP HPLC analysis using Bondapak $C_{18}$ column, methanol mobile phase, and a photodiode array (PDA) detector. Also, the content of UV-5411 in the polycarbonate was about 0.12 wt% by a quantitative analysis through UV spectroscopy.

  • PDF

Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon (저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발)

  • Kim, Dae-Hyun;Lee, Sang-Deuk;Lee, Byung-Gwon;Kim, Myung-Jun;Hong, Suk-In;Moon, Dong-Ju
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.80-87
    • /
    • 2008
  • Steam reforming of LPG was investigated over spc-Ni/MgAl catalyst in a temperature range of $600{\sim}850^{\circ}C$, feed molar ratio of $H_2O/C=1.0{\sim}3.0$, space velocity of $10,000{\sim}90,000h^{-1}$ and at atmospheric pressure. spc-Ni/MgAl catalyst was prepared by a co-precipitation method, whereas Ni/MgO and $Ni/Al_2O_3$ catalysts were prepared by an incipient wetness method. The characteristics of catalysts were analyzed by N2 Physisorption, CO chemisorption, XRD, TOF-SIMS, SEM and TEM techniques. The Ni/MgO and $Ni/Al_2O_3$ catalysts were deactivated by the formation of carbon. However, the spc-Ni/MgAl catalyst showed higher conversion and $H_2$ selectivity than the other catalysts, even though carbon was formed on the surface of the catalyst during the reaction under the tested reaction conditions.

  • PDF

Irrigation Frequency and Nitrogen Rates for Tall Fescue Growth

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.130-136
    • /
    • 2014
  • Tall fescue is commonly well-adapted for low maintain area because of its wear resistance, deep root system, and drought tolerances. Deep and infrequent irrigation refers to applying large amounts of irrigation, 1.3 to 2.5 cm or more, in a single irrigation event. Light and frequent irrigation is commonly used with small amounts of water, 0.3 to 0.6 cm, every day or every other day. N use for turfgrass management is often unnoticed for water management. The objective of this field study was to evaluate the effects of irrigation frequency and N rates for tall fescue growth. The three irrigation treatments were no irrigation (precipitation only), 0.5 cm applied every other day, and 1.8 cm applied once a week at one irrigation event. The nitrogen (N) treatments were the low, medium, and high N rate treatments. The low, medium, and high N treatments were applied over 2, 4, and 6 applications, respectively. If high main maintenance of tall fescue is not important and water source is limited, irrigation is not necessary and, the $9.8gNm^{-2}yr^{-1}$ of two applications can be recommended for tall fescue under the weather condition of the study.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

Aging Characteristics of Grape and Pear Growth Paper Bag (포도, 배 재배용 과수봉지의 열화 특성)

  • Ha, Jin-Yang;Chae, Su-Myoung;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.41-49
    • /
    • 2014
  • The research was performed to investigate the weathering characteristics of fruit growth paper bags. The bags were used to cover fruits such as grapes and pears. And then they were collected after 30 and 60 days exposure at the orchard. The physical and optical properties of the bags tended to decrease with the exposure times. The larger change on the properties were found on the papers exposed for 30 days. The cover paper for pear showed the largest density changes. The air permeability were decreased with the exposure time in all bags. The cover paper for pear showed the very low values of air permeability. The mechanical properties of the fruit bags showed to be gradually decreased with the length of exposure time. The tear index showed the largest differences. The cover paper for pear showed the rapid decrease on the mechanical properties after 60 days of the exposure. The inner paper, however, showed the strength enough to cover the fruits. The precipitation showed more effect on the degradation of fruit growth paper bags than the light hours.

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

Preparation of C60 Nanowhiskers/WO3 Nanocomposites and Photocatalytic Degradation of Organic Dyes

  • Kim, Keun Hyung;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • $C_{60}$ nanowhiskers were synthesized from $C_{60}$ by liquid-liquid interfacial precipitation (LLIP) using $C_{60}$-saturated toluene and isopropyl alcohol. The $WO_3$ nanoparticles were synthesized by adding $3.8{\times}10^{-4}$ mole amount of ammonium metatungstate hydrate ($H_{26}N_6O_{40}W_{12}{\cdot}H_2O$) to 500 ml of distilled water, and the resulting solution was heated on a hot plate for 4 h. The $C_{60}$ nanowhiskers/$WO_3$ nanocomposites were prepared with $C_{60}$ nanowhiskers and $WO_3$ nanoparticles in an electric furnace at $700^{\circ}C$ in an argon gas atmosphere for 2 h. The $C_{60}$ nanowhiskers/$WO_3$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectroscopy was used to evaluate the performance of the $C_{60}$ nanowhiskers/$WO_3$ nanocomposites as a photocatalyst in the degradation of organic dyes, such as methylene blue (MB) and brilliant green (BG) under ultraviolet light (254 nm).