• 제목/요약/키워드: light microscope

검색결과 1,108건 처리시간 0.024초

Effect of Laser Beam Trajectory on Donor Plate in Laser Induced Thermal Printing Process

  • Lee, Kwang-Won;Lee, Si-Jin;Kwon, Jin-Hyuk;Yi, Jong-Hoon;Park, Lee-Soon
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.362-367
    • /
    • 2011
  • Organic ($Alq_3$) film, which was coated on a donor plate, was transferred to an organic light emitting diode (OLED) substrate with help of heat generated by a dithering laser beam. The laser beam was diffracted in an acousto-optic modulator (AOM), then focused on the laser-to-heat converting layer of the donor plate; the focused spot followed trajectories guided by rotation of a Galvano-mirror. Three different functional waveforms, sine wave, square wave, and saw tooth wave were applied to the AOM as modulation signal to generate the dithering beam. The fluorescence microscope images of the donor plate showed that the patterns of removed $Alq_3$ film were affected considerably by the modulation waveforms and the phase difference between adjacent dithering beams. Further, the printed images of Alq3 film on the OLED substrate were different from the patterns of removed Alq3 film. Atomic force microscope images indicated that not only direct transfer but also deposition by sublimated vapor of Alq3 contributed to the pattern formation. Printed patterns affected considerably the electricity-to-light conversion characteristics of OLEDs. For uniform transfer, not only the phase relation of dithering beam lines but also adequate waveform were important.

감나무 둥근무늬낙엽병균 Mycosphaerella nawae의 불완전 세대 동정 (Identification of the Imperfect Stage of Mycosphaerella nawae Causing Circular Leaf Spot of Persimmon in Korea)

  • 권진혁;강수웅;박창석;김희규
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.397-401
    • /
    • 1998
  • Asexual spores of Mycosphaerella nawae were profusely produced on PDA after a prolonged incubation at $25^{\circ}C$ for 90 days. When persimmon trees were artificially inoculated by the conidial suspension, typical symptoms of circular leaf spot of persimmon appeared on the leaves two month later. The imperfect stag of the fungus was identified as Ramularia sp. based on following morphological characteristics examined under a light microscope and a scanning electron microscope. Conidia were mostly ellipsoid, but occasionally cylindrical, elongated oval, taro, peanut or gourd shapes and measured as 12.2~32.6$\times$6.1~10.2 ${\mu}{\textrm}{m}$. erect, hyaline, colorless-light brown. Conidia were formed solitarily or in chains on a medium and infected leaves. Conidiophore was erect, hyaline, colorless-light brown. and the size was 20.4~102.0$\times$3.1~10.2 ${\mu}{\textrm}{m}$, respectively. In this paper, we firstly demonstratrated that asexual spores of M. nawae induced persimmon circular leaf spot in nature as well as sexual spores of the fungus. Therefore, it is hypothesized that the imperfect stage of the fungus plays an important role in nature for epidemics as secondary inoculum.

  • PDF

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • 정보저장시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

초기우식병소에 대한 레이저 fluorescence의 광학적 탐지감도 (OPTICAL SENSITIVITY OF LASER FLUORESCENCE FOR INCIPIENT CARIES DETECTION)

  • 김효석;김왕근;이창섭;이상호
    • 대한소아치과학회지
    • /
    • 제26권1호
    • /
    • pp.109-118
    • /
    • 1999
  • The aim of this study was to evaluate the optical density of laser fluorescence for detection of incipient caries. Prepared and polished bovine enamel specimens were demineralized in a STPP solution for varying periods of time between 3 hrs. and 60 hrs. with an area of sound enamel retained on each specimen. The randomized specimens were analyzed for optical density of enamel demineralization using laser fluorescence. The specimens were sectioned and examined lesion depth by polarizing light microscope. Results were analyzed statistically with SAS program. The results from this study can be summarized as follows: 1. Optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was increased as demineralization time was increased(p<0.001). 2. Between optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was correlated highly(${\gamma}{\geq}0.74956$, p<0.001). 3. Regressive equation was obtained in this study as follows. Y=[X-0.260851]/0.000271(R-square:0.5618, p<0.001) (X:DENSITY, Y:DEPTH) In summary, optical density measured by laser fluorescence would be within the range of possibility to quantitatively presume demineralization amount of incipient caries lesion

  • PDF

가시광선(可視光線) 중합형(重合型) 복합(複合)레진의 표면조도(表面粗度)에 관(關)한 연구(硏究) (A STUDY ON THE ROUGHNESS OF THE VISIBLE LIGHT CURED COMPOSITE RESINS)

  • 이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제16권2호
    • /
    • pp.197-212
    • /
    • 1991
  • The purpose of this study was to roughness on the polished surface of visible light composite resins and was to observe the polished surfaces under Scanning Electrom Microscope(ISI DS 130 AKASHI Co. JAPAN). The surface roughness tester(Surfcom 700A Seimtsu profilometer Tokyo, Japan) was used to measure roughness of polished surfaces. In this study, 5 brands of visible of composite resins were examined, Pyrofile light bond Anterior Lite fil anterior Photo clearfil anterior & posterior Palfique light Anterior and posterior Silux Anterior. White point, Silicure point, Super snap Sof-Lex medium disk as cutting instrument, and celluloid matrix were used. The results obtained were as follows. 1. The Celluloid matrix produced the smoothest surfaces. 2. The surfaces made by Soflex medium disk was smoother than the surfaces made by any other polishing instruments. 3. The values of surface roughness made by White point, Silicon point and Super snap were similer. 4. Palfique light (AP) visible light composite resin showed the smoothest surface after polishing with Silicone point, Super snap disk and Soflex mediuem disk in all tested materials.

  • PDF

Synthesis and Properties of Ca8Gd2(PO4)6O2 Nano-Crystalline Structures

  • Bharat, L. Krishna;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.286.1-286.1
    • /
    • 2013
  • Nowadays, the glare towards the light-emitting diode (LED) lighting source has much attention due to its eco-friendly nature, reduced energy consumption, and low CO2 emission. LEDs can show versatile colors by changing the composition ratio of semiconductors. Phosphors re-emit light by absorbing light from LED, which is the key factor for emission. The endeavor to make replica of natural white light is increasing day by day. Industrially, blue LED chip crowned with a yellow phosphor coated lens gives low quality white light. Newly, many researchers are introducing modern approaches, adding red phosphor to the yellow phosphor to increase the quality of white light. Here, we synthesized structurally and chemically stable europium doped oxyapatite Ca8Gd2(PO4)6O2 nano-crystalline structures by a hydrothermal method. The ultrafine structures were formed due to the effect of ethylenediaminetetraacetic acid, which is confirmed by the transmission electron microscope images. The structural properties were analyzed using the X-ray diffraction patterns.

  • PDF

악간고정(顎間固定)이 가토(家兎)의 하악두(下顎頭) 연골세포(軟骨細胞)에 미치는 영향(影響)에 관(關)한 연구(硏究);광학현미경적(光學顯微鏡的) 및 전자현미경적(電子顯微鏡的) 연구(硏究) (A STUDY ON THE EFFECT OF INTERMAXILLARY FIXATION ON THE CHONDROCYTES OF RABBIT MANDIBULAR CONDYLE;A light and electron microscopic study)

  • 류동목;김여갑;이상철
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제11권1호
    • /
    • pp.130-152
    • /
    • 1989
  • The purpose of this study was to observe the effect of intermaxillary fixation on the chondrocytes of the mandibular condyle under the light and the electron microscope. For this study, twenty rabbits were placed in maxillomandibular fixation, and two were used as a control group. The experimental group was subdivided into 3, 7, 14, 21 and 28 day group. After the experimental period of 3, 7, 14, 21 and 28 days, the animals were sacrificed with a vascular perfusion of 2.5% glutaraldehyde. The condylar processes were exenterated, and decalcified in 0.1M EDTA with 2.5% glutaraldehyde solution for two weeks. The specimens were rinsed with phosphate buffer solution and the post-fixation was carried out with 2% osmium tetroxide at $4^{\circ}C$ for two hours. Thereafter the specimens were dehydrated in alcohol series, cleared with propylene oxide and embedded in Epon 812 resin. Thin sections and ultra-thin sections were made, and the cellular structures of the condylar cartilages were observed with light and electron microscope. The results were as follows: 1. In the intermaxillary fixation group, the cartilaginous tissues of mandibular condyles showed a marked decrease in the thickness compared to the control group. 2. A remarkable change was noticed in the proliferating and the hypertrophic zone of the condylar cartilages in the experimental group. 3. An atrophic change of the condylar cartilage was appeared in the 3 day experimental group and degenerative change was observed in the 7 day experimental group, and recovery was seen in thereafter 14 day experimental group. 4. Calcification, degeneration and resorption of condylar cartilage were recognizable, and the cellular zone of the condylar cartilage was appeared indistinctly in 3 day and 7 day experimental group. The chondroblasts, however, were differentiated into chondrocytes and resumed mitosis, and then the cellular zones of the condylar cartilage were reorganized from the 14 day experimental group under the findings of light microscope. 5. Under the findings of electron microscope, atrophic changes and decrease in number of intracellular organelles, degenerative changes of cytoplasm, and pyknosis of nuclei were observed in early stage, however, a gradual regeneration and reorganization of the intracellular organelles were observed from 14 day experimental group.

  • PDF

Observation of sperm-head vacuoles and sperm morphology under light microscope

  • Park, Yong-Seog;Park, Sol;Ko, Duck Sung;Park, Dong Wook;Seo, Ju Tae;Yang, Kwang Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.132-136
    • /
    • 2014
  • Objective: The presence of sperm-head vacuoles has been suspected to be deleterious to the outcomes of assisted reproductive technology (ART). It is difficult to accurately distinguish morphologically abnormal sperm with vacuoles under a light microscope. This study was performed to analyze the result of the observation of sperm-head vacuoles using Papanicolaou staining under a light microscope and whether the male partner's age affects these vacuoles. Methods: Sperm morphology with vacuoles was evaluated using Papanicolaou staining and observed under a light microscope ($400{\times)$) in 980 men. The normal morphology was divided into three categories (group A, <4% of normal morphology; group B, 4%-14% of normal morphology; and group C, >14% of normal morphology). The criteria for the sperm-head vacuoles were those given in the World Health Organization manual. For the analysis of the age factor, the participants were divided into the following groups: 26-30 years, 31-35 years, 36-40 years, 41-45 years, and 46-50 years. Results: The percentage of sperm-head vacuoles increased with normal sperm morphology (group A vs. groups B, C) (p<0.05). In the case of the age factor, a statistically significant difference was not observed across any of the age groups. Conclusion: A majority of the sperm-head vacuoles showed a statistically significant difference among normal morphology groups. Therefore, we should consider the probability of the percentage of sperm-head vacuoles not increasing with age but with abnormal sperm morphology. A further study is required to clarify the effect of the sperm-head vacuoles on ART outcomes.

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.