• Title/Summary/Keyword: light metals

Search Result 232, Processing Time 0.025 seconds

Research on Measurement of Infrared Thermograpphy under High Temperature Condition (고온 환경에서의 적외선 열화상 측정에 관한 연구)

  • Jun-Sik Lee;Jae-Wook Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2024
  • This study conducted a measurement method of high temeprature conditions using infrared termography. All objects emit infrared light, and this emissivity has a significant impact on the temperature measurements of infrared thermal imaging (IR) cameras. In order to measure the temperature more accurately with the IR camera, correction equations were derived by measuring the emissivity according to the temperature change of combustible metals in a high-temperature environment. Two combustible metals, Mg and Al, were used to measure emissivity with changing temperature. Each metal was heated, the emissivity was measured by comparing the temperature with IR camera and thermocouples so that the correlation between temperature and emissivity could be anslyzed. As a result of the experiment, the emissivity of the metals increases as the temperature increased. This can be interpreted as a result of increased radiation emission as the thermal movement of internal metal molecules increased.

Electrochemical Corrosion Characteristics of the Intermetallic Compound NiTi from Pure Metals (금속간 화합물 NiTi와 순금속 니켈 및 티타늄의 전기화학적 부식 특성)

  • Lee, Kyu Hwan;Shin, Myung Chul
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.97-101
    • /
    • 1992
  • Potentiodynamic corrosion tests were conducted to know the corrosion characteristics of the NiTi intermetallic compound composed of pure Ni and Ti in artificial saline. Tafel extrapolation and linear polarization technique show similar results. Corrosion current Icorr and corrosion rate was increased in the order of NiTi

  • PDF

Biosorption of Cr, Cu and Al by Sargassum Biomass

  • Lee, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1997
  • The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algae Sargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptaker of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoiceometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2+ or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of raw S. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl2/HC solution at pH 3.

  • PDF

Effects of heavy metals and albumin on lysozyme activity

  • Ko, Eun;Ku, Seul-I;Kim, Dae-yoon;Shin, Sooim;Choi, Moonsung
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.367-370
    • /
    • 2018
  • Lysozyme is an antibacterial enzyme that is found in most of body fluids. Lysozyme in tears plays a primary role in protecting eye from harmful environments; if lysozyme is degraded or inhibited, eyes are likely to be more vulnerable to bacterial infection. In this study, lysozyme activity was evaluated according to varying concentrations of heavy metals, copper, zinc, cobalt and manganese and light metal, calcium that are frequently found in airborne particulate matters and was assayed using a dye-quenching lysozyme substrate, Micrococcus lysodeikticus. Less fluorescence intensity was observed with increasing amounts of copper, zinc, manganese and cobalt but not with calcium suggesting that these metals have some affinity with lysozyme and inhibit lysozyme activity. When albumin, the second most common protein in tears, was added on the reaction of lysozyme and metals, lysozyme activity was partially restored. This finding suggests that the albumin might protect damage caused by metals on lysozyme. To identify whether the decrease in enzymatic activity was related to structural changes of lysozyme, SDS-PAGE was conducted and only with copper did lysozyme show marked smearing bands on the SDS-gel, meaning that copper degraded lysozyme consistent with the sharpest activity decrease.

Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments (수용액 환경에서 수은 측정을 위한 로다민 기반의 광섬유 센서 개발)

  • Lee, Ae Ri;Kim, Yong Il;Kim, Beom Kyu;Park, Byung Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.173-177
    • /
    • 2014
  • A Rhodamine-based fiber-optic sensor has been developed to detect mercury ions in aqueous environments. The fiber-optic sensor was composed of a mercury-sensing thin film, plastic optical fibers, and a spectrometer. The mercury-sensing thin film with the synthesized Rhodamine derivatives was fabricated with Sol-Gel process. A light emitted by a light source is guided by plastic optical fibers into the thin film in an aqueous solution and a reflected light is analyzed with the spectrometer. The experiment exhibits that an absorbance in the thin film is increased as mercury concentration is increased in the solution and the absorbance by mercury is higher than that by other heavy metals. The fiber-optic sensor exhibits high chromogenic phenomenon of mercury ions among various heavy metals and the correlation between absorbance and mercury concentration in the aqueous environments.

A Study on Manufacturing of LCD Prism Sheets Through Silicon Anisotropic Etching (실리콘 이방성 식각을 통한 LCD 프리즘 시트 제작 연구)

  • Jeon, Kwangseok;Ryoo, Kunkul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.377-381
    • /
    • 2008
  • Prism sheet of LCD BLU which depends on supply from Japan and U.S.A was studied by using Si anisotropic etching and injection molding technologies. First, the prism sheet was patterned on Si wafer through photolithography, and the best conditions of Si etching were determined through etching Si wafer with TMAH to obtain straight optimized zigzag patterns, and a cross pattern to provide light diffusion and concurrent focusing. The etch rate of TMAH was concluded to be constant for $25wt%-70^{\circ}C$ condition. Ni stamp of prism sheet was made by electrodeposition using patterned Si wafer, normal or fast H/C(Heating/Cooling) injections were carried out to fabricate prism sheet. It was known that fast H/C injection could fabricate prism sheet more accurately than normal injection. Zigzag patterns and the cross pattern showed higher transmissivity than the straight patterns because of light diffusion through diagonal direction. The fast H/C injection for zigzag patterns showed lower transmissivity than normal injection because there occurred more light diffusion through precise injection patterns, but the fast H/C injection for straight patterns showed only refraction without diffusion, causing lower transmissivity than normal injection.

Synthesis and Characterization of Fe-fullerene/TiO2 Photocatalysts Designed for Degradation of Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.674-682
    • /
    • 2010
  • Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/$TiO_2$ composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/$TiO_2$ composite. From the photocatalytic results, the excellent activity of the Fe-fullerene/$TiO_2$ composites for degradation of methylene blue under UV light irradiation could be attributed to both the effects between photocatalytic reaction of the supported $TiO_2$, decomposition of the organometallic reaction by the Fe compound and energy transfer effects such as electron and light of the fullerene.

Size Distribution and Source Identification of Airborne Particulate Matter and Metallic Elements in a Typical Industrial City

  • Ny, Mai Tra;Lee, Byeong-Kyu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2010
  • The size distribution of airborne particulate matter (PM) and the concentrations of associated metallic elements were investigated in a busy urban region of a typical Korean industrial city. The PM concentrations measured during the spring, except for those in the size range of 1.1 to 2.1 ${\mu}m$, were slightly higher than the PM concentrations in the summer. Coarse particles contributed greatly to the variation in PM concentrations in the spring, while fine and submicron particles contributed largely to the variation in PM concentrations in the summer. The difference in size modes of the PM concentrations between spring and summer may be explained by the Asian dust effect and its accompanying wind direction and speed. Extremely high enrichment factors (EFs) values (6,971 to 60,966) for all of the size distributions in PM were identified for cadmium (Cd). High EFs values (12 to 907) were also identified for other heavy metals including Cr, Cu, Ni, Pb, Zn and Mn. Low EF values (0.29 to 8.61) were identified for Ca, K, Mg and Na. These results support the common hypothesis that most heavy metals in ambient PM have anthropogenic sources and most light metals have crustal sources. The results of principal components analyses and cluster analyses for heavy metals indicate that the principal sources of PM and metals were emissions from non-ferrous metal smelters, oil combustion, incinerators, vehicular traffic and road dust.

Laser-Direct Patterning of Nanostructured Metal Thin Films (나노구조 금속 박막의 레이저 직접 패터닝에 관한 연구)

  • Shin, Hyunkwon;Lee, Hyeongjae;Yoo, Hyeonggeun;Lim, Ki-Soo;Lee, Myeongkyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • We here describe the laser-direct patterning of nanostructured metal thin films. This method involves light-matter interaction in which a pulsed laser beam impinging on the film generates a thermoelastic force that plays a role to detach the film from the substrate or underlying layers. A moderate cohesion of the nanostructured film enables localized desorption of the material upon irradiation by a spatiallymodulated laser beam, giving good fidelity with the transfered pattern. This photoresist-free process provides a simple high-resolution scheme for patterning metal thin films.