• Title/Summary/Keyword: light fill materials

Search Result 64, Processing Time 0.024 seconds

Long-term Compressible Settlement of Coal Ash and Tire Shred as Fill Materials (석탄회 및 폐타이어 재료의 장기 압축 침하 거동 특성)

  • Lee, Sung-Jin;Shin, Min-Ho;Hwang, Seon-Keun;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.858-865
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we estimated the long-term compressible settlements for 6 materials such as TA(Tire-Bottom Ash mixture), TBA(Tire-Bottom Ash<5mm) mixture, TWS(Tire-Weathered Soil mixture), Bottom Ash, Bottom Ash(<5mm), Weathered soils.

  • PDF

A Study on Application as fill materials of Bottom Ash and Tire Shred by Field Test Embankment (현장시험성토를 통한 석탄회 및 폐타이어의 성토재료 활용성 검토)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Tae-Yoon;Shin, Min-Ho;Hwang, Seon-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1032-1039
    • /
    • 2010
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we built real scale embankment with RBA(Reclamated Bottom Ash), TRBA(Tire shred-Reclamated Bottom Ash mixture), WS(Weathered Soil), BA(Bottom Ash screened by 5mm sieve) for monitoring the behavior such as settlement, lateral displacement and water content change. Furthermore, we are examining the ground water quality in the surrounding area of the test embankment.

  • PDF

Comparison of Geotechnical Characteristics of Bottom Ash for Lightweight Fill Material (경량 성토재 활용을 위한 석탄 저회 물성 비교)

  • Kim, Yun-Ki;Lee, Sung-Jin;Shin, Min-Ho;Lee, Seung-Rae;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.679-686
    • /
    • 2010
  • Mechanical characteristics of bottom ash produced in coal-fired power plant are investigated to utilize as light-weight fill materials. Triaxial compression test, water retention test, and unsaturated direct shear test were conducted for weathered soil (WS), reclaimed bottom ash (RBA), and screened bottom ash (BA). RBA had larger frictional angle and lower effective cohesion than those of WS. Water retention charactersitics of RBA and BA existed within distributions of soil-water characteristic curves for domestic weathered soils. Unsaturated shear strength of RBA was similar to that of WS at matric suctions of 50 kPa and 100 kPa. As a conclusion, bottom ash can be used as fill materials to replace the conventional construction materials by.

  • PDF

Relationship between battery level and irradiance of light-curing units and their effects on the hardness of a bulk-fill composite resin

  • Fernanda Harumi Oku Prochnow ;Patricia Valeria Manozzo Kunz;Gisele Maria Correr;Marina da Rosa Kaizer;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2022
  • Objectives: This study evaluated the relationship between the battery charge level and irradiance of light-emitting diode (LED) light-curing units (LCUs) and how these variables influence the Vickers hardness number (VHN) of a bulk-fill resin. Materials and Methods: Four LCUs were evaluated: Radii Plus (SDI), Radii-cal (SDI), Elipar Deep Cure (Filtek Bulk Fill, 3M Oral Care), and Poly Wireless (Kavo Kerr). Irradiance was measured using a radiometer every ten 20-second activations until the battery was discharged. Disks (4 mm thick) of a bulk-fill resin (Filtek Bulk Fill, 3M Oral Care) were prepared, and the VHN was determined on the top and bottom surfaces when light-cured with the LCUs with battery levels at 100%, 50% and 10%. Data were analyzed by 2-way analysis of variance, the Tukey's test, and Pearson correlations (α = 5%). Results: Elipar Deep Cure and Poly Wireless showed significant differences between the irradiance when the battery was fully charged versus discharged (10% battery level). Significant differences in irradiance were detected among all LCUs, within each battery condition tested. Hardness ratios below 80% were obtained for Radii-cal (10% battery level) and for Poly Wireless (50% and 10% battery levels). The battery level showed moderate and strong, but non-significant, positive correlations with the VHN and irradiance. Conclusions: Although the irradiance was different among LCUs, it decreased in half of the devices along with a reduction in battery level. In addition, the composite resin effectiveness of curing, measured by the hardness ratio, was reduced when the LCUs' battery was discharged.

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF

Bulk-fill 복합레진, 믿고 사용해도 될까?

  • Koh, Kyeol;Park, Jeong-Won
    • The Journal of the Korean dental association
    • /
    • v.57 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • Composite resin restorations in posterior teeth are increasing due to the aesthetic needs of patients and the development of materials. This trend will accelerate in line with domestic insurance policies. However, resin composites generate stresses due to their contraction during the polymerization process. To reduce the polymerization shrinkage stress of resin composites, incremental layering technique has been recommended for decades. This technique reduces stress at the cavity wall interface and allows a more efficient light curing of the material. Bulk-fill resin composites have been designed to simplify the restorative technique because they can be placed into cavities in a single increment of 4-5mm. The simplification of the operative procedures is desirable in clinical daily practice. In this context, bulk-fill resin composites are an attractive alternative for posterior restorations. However, a clearer understanding of the clinical performance of this relatively new class of materials in comparison to conventional resin composites is required. Based on previous studies, the aim of the current review was to present the clinical criteria for the use of bulk-fill composites in direct restorations of posterior teeth.

  • PDF

Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites

  • Abouelleil, Hazem;Pradelle, Nelly;Villat, Cyril;Attik, Nina;Colon, Pierre;Grosgogeat, Brigitte
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.262-269
    • /
    • 2015
  • Objectives: The aim of this study was to evaluate the mechanical and physical properties of a newly developed fiber reinforced dental composite. Materials and Methods: Fiber reinforced composite EverX Posterior (EXP, GC EUROPE), and other commercially available bulk fill composites, including Filtek Bulk Fill (FB, 3M ESPE), SonicFill (SF, Kerr Corp.), SureFil (SDR, Dentsply), Venus Bulk Fill (VB, HerausKultzer), Tetric evoceram bulk fill (TECB, Ivoclar Vivadent), and Xtra Base (XB, Voco) were characterized. Composite samples light-cured with a LED device were evaluated in terms of flexural strength, flexural modulus (ISO 4049, n = 6), fracture toughness (n = 6), and Vickers hardness (0, 2, and 4 mm in depth at 24 hr, n = 5). The EXP samples and the fracture surface were observed under a scanning electron microscopy. Data were statistically analyzed using one-way ANOVA and unpaired t-test. Results: EXP, FB, and VB had significantly higher fracture toughness value compared to all the other bulk composite types. SF, EXP, and XB were not statistically different, and had significantly higher flexural strength values compared to other tested composite materials. EXP had the highest flexural modulus, VB had the lowest values. Vickers hardness values revealed SF, EXP, TECB, and XB were not statistically different, and had significantly higher values compared to other tested composite materials. SEM observations show well dispersed fibers working as a reinforcing phase. Conclusions: The addition of fibers to methacrylate-based matrix results in composites with either comparable or superior mechanical properties compared to the other bulk fill materials tested.

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

Compaction Propertiesof Light Weight Soil Mixtures Using Crushed Expanded Polystyrene (파쇄된 발포폴리스티렌을 이용한 경량혼합토의 다짐특성)

  • Kang, Sung;Chang, Pyoung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.79-85
    • /
    • 1999
  • Use of soils with crushed expanded polystyrene(EPS) satisfied both recycling of industrial waste and development of new light-weight fill materials. Objectives of the study were to make the mixed the mixed soils with the crushed EPS and to suggest the most rational mixing ration as a fill material. A series of laboratory tests was performed to investigate the relationship between miximum dry density and optimum moisture contenr and to find the variation of CBR for mixtures with 3 soils and 2 sizes of the crushed EPS. Results of the test showed that the sizes fo the curshed EPS had a little effect on the properties of mixed soils. But gradatiion of soils and mixing ration with the crushed EPS were important factors to characterize compaction properties of the mixed soils.

  • PDF