• Title/Summary/Keyword: light field

Search Result 2,435, Processing Time 0.04 seconds

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Development of an Inspection System of Contact Light Emitting Device for Quality Control

  • Lee, Jun-Ho;Kwon, Hyung-Kee;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118.3-118
    • /
    • 2001
  • CLED (Contact Light Emitting Device) has three layers consisting of a transparent electrode, a light emitting layer and a substrate. When the substrate of the CLED comes in contact with a fingerprint under AC input voltage, it makes an electric field between the fingerprint and the device. Due to the electric field, the light is emitted along the ridgeline of the fingerprint. The intensity along the ridge on the surface of the CLED increase in proportion to the electric field. To achieve uniform performance of fingerprint verification devices, inspection system of CLED for quality control were required. In this research, we proposed the factors for quality controls such as dimensions of the CLED, uniformity ...

  • PDF

Azimuthal anchoring measurement of nematic liquid crystals using the strong magnetic field

  • Jang, Tae-Sug;Im, Ji-Young;Goh, Wan-Hee;Kim, Jong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.664-667
    • /
    • 2009
  • We would like to show a measuring technique of azimuthal anchoring energy of the nematic liquid crystals. The electro-optical setup of liquid crystal cell, crossed polarizers and magnetic field was assumed. The planar or hybrid alignment cells were prepared. The director in the light entering substrate and the polarization of light was adjusted into parallel to the magnetic field. The director orientation of exit substrate and analyser maintained perpendicular to the magnetic field. As the magnetic field strength is increased, the director deviates from the easy axis and rotates to the field direction. We obtained an equation calculating the change of transmission with the field and measured experimentally the transmission. By comparing the calculating and experimental data, we obtained the azimuthal anchoring strength.

  • PDF

Ambipoalr light-emitting organic field-effect transistor using a wide-band-gap blue-emitting molecule

  • Sakanoue, Tomo;Yahiro, Masayuki;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.137-140
    • /
    • 2007
  • We prepared ambipolar organic field-effect transistors and observed blue emission when both hole and electron accumulation layers were in the channel. We found that the reduction of carrier traps and controlling devices' preparation and measurement conditions were crucial for ambipolar operation.

  • PDF

Preprocessing for High Quality Real-time Imaging Systems by Low-light Stretch Algorithm

  • Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.585-589
    • /
    • 2018
  • Consumer demand for high quality image/video services led to growing trend in image quality enhancement study. Therefore, recent years was a period of substantial progress in this research field. Through careful observation of the image quality after processing by image enhancement algorithms, we perceived that the dark region in the image usually suffered loss of contrast to a certain extent. In this paper, the low-light stretch preprocessing algorithm is, hence, proposed to resolve the aforementioned issue. The proposed approach is evaluated qualitatively and quantitatively against the well-known histogram equalization and Photoshop curve adjustment. The evaluation results validate the efficiency and superiority of the low-light stretch over the benchmarking methods. In addition, we also propose the 255MHz-capable hardware implementation to ease the process of incorporating low-light stretch into real-time imaging systems, such as aerial surveillance and monitoring with drones and driving aiding systems.

Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review

  • Palanivelu, K.;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.214-224
    • /
    • 2007
  • The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve $TiO_2$ visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to $TiO_2$ are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.

Light Scattering Analysis on Coagulation Detection with Magnetic Particles

  • Nahm, Kie B.
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.623-628
    • /
    • 2018
  • Clotting properties of human blood are important clinical information to monitor for patients with platelet and coagulation disorders. Most devices used to diagnose these disorders utilize blood plasma together with tissue factors and $Ca^{{+}{+}}$ additives. In some instruments, magnetic particles were mixed with blood samples and a rotating magnetic field was applied, resulting in the rotation of magnetic particles, which was probed by impinging light. The working principle seems obvious yet had not been investigated in depth. We modeled the collective behavior of light propagating through magnetic needles, aligned in the direction of the rotating external magnetic field, with scattering light analysis software. Simulation results indicated that the scattering pattern undergoes periodic undulations with respect to the slant angle of the magnetic needles. Also provided is a means of extracting meaningful information from the scattering measurement.

Research on Light Reflection Effect of the Optical Micro Pattern Using Ultra-Precision Technology (초정밀가공 기술을 이용한 광학 마이크로패턴의 광 반사 효과에 관한 연구)

  • Yoo, Chun-Kun;Yoon, Chul-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.621-628
    • /
    • 2009
  • Because the Ultra-Precision Technology increase its competitiveness in the field of the design, precision of processing technology, confidence and fixation degree are major considerations. According to Pattern shapes using these processing technologies, Light Reflection has influence on the sense of sight about human being. Based on background of these studies, we draw a plan about a round workpiece using a 3D design program and analyze the effect on Light Reflection changing a pattern angle and a source of light through SPEOS program in this research. We make Pattern form as V-Shape, and compare the area distributed by Light Reflection by classifying angle into 4 and analyze changes according to a source of light. In order to measure and evaluate the data from simulation analysis we has manufactured Diamond Tool and has processed Pattern precision using a Ultra-Precision Machine. Based on the result of this study, we forecast that the field of design will achieve rapid growth due to Ultra-Precision Technology in the world market.

  • PDF

Study of Stray-light Analysis and Suppression Methods for the Spectroscopic System of a Solar-radiation Observer Instrument

  • Zheng, Ru;Liu, Bo;Wang, Lingyun;Gao, Yue;Li, Guangxi;Li, Changyu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.220-228
    • /
    • 2021
  • To improve the measurement accuracy of a solar-radiation observer instrument, aiming at the problem of multiorder-stray-light interference caused by the diffraction of the flat-field concave grating in the spectroscopic system, straylight suppression methods for different forms of optical traps are studied. According to the grating surface-scattering distribution-function model, the bidirectional scattering distribution function (BSDF) of a dust-polluted surface and the flat-field concave grating's transition area of the spectroscopic system is calculated, and a Lyot stop with blade baffle is designed to suppress this kind of stray light. For diffraction multiorder stray light, based on the theory of light-energy transmission, a design for precise positioning of the trench optical trap is proposed. The superiority of the method is verified through simulation and actual measurement. The simulation results show that in a spectroscopic system approximately 160 mm × 140 mm × 80 mm in size, the energy of the stray light is reduced by one order of magnitude by means of the trench optical trap and Lyot stop, and the number of beams is reduced from 5664 to 1040. The actual measurements show that the stray-light-suppression efficiency is about 69.4%, which is effective reduction of the amount of stray light.

Changes in nocturnal insect communities in forest-dominated landscape relevant to artificial light intensity

  • Lee, Hakbong;Cho, Yong-Chan;Jung, Sang-Woo;Kim, Yoon-Ho;Lee, Seung-Gyu
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.218-227
    • /
    • 2021
  • Background: Artificial light at night has recently been identified as a major factor adversely affecting global insect diversity. Here, we compared the insect diversity in Gwangneung Forest Biosphere Reserve, specifically in the Korea National Arboretum (with no artificial light at night), with that of three nearby urban sites with a gradient of artificial light at night (five locations at each site). We analyzed the effects of the artificial night lighting index, mean annual temperature, and field light intensity (lux) at night on the insect community structure. Results: The urban sites generally exhibited higher species richness and abundance as well as clear indicator species compared with the control site. The size distribution of the collected insects markedly differed between the control and the three urban sites. The abundance of herbivorous and omnivorous insects increased and decreased, respectively, with the increase in light intensity. Species richness of herbivorous and omnivorous insects was likely correlated with the field light intensity at night and artificial night lighting index, respectively. Conclusions: This study demonstrates the association between nighttime environment and marked changes in insect community structure and revealed consequent transition of ecosystem services by changes in trophic group composition.