• Title/Summary/Keyword: light cycle

Search Result 610, Processing Time 0.024 seconds

Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light (자연광의 색온도 주기 재현을 위한 슬라이딩 윈도우 기반 이상치 판정 알고리즘)

  • Jeon, Geon Woo;Oh, Seung Taek;Lim, Jae Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Research in the field of health lighting has continued to advance to reproduce the color temperature of natural light which periodically changes. However, most of this research could only reproduce a uniform circadian color temperature of natural light, therefore failing to realize the characteristics of the circadian cycle of color temperature difference by latitude and longitude. To reproduce the color temperature of natural light on which the characteristics of a region are reflected, the collection technology of real-time characteristics of natural light is needed. If the color temperatures which are not within a periodical pattern due to climate changes, etc., are measured, it will be difficult to judge the occurrence (presence) of the anomalies and to reproduce the circadian cycle of the color temperature of natural light. Therefore, this study proposes an algorithm for judging the anomalies in real time based on the sliding window to reproduce the color temperature of natural light. First, the natural light characteristics DB collected through the on-site measurement were analyzed, the differential values at a one-minute interval were calculated and examined, and then representative color temperature circadian patterns by solar terms were drawn. The anomalies were then detected by the application of the sliding window that calculated the deviation of the color temperature for the measured color temperature data set, which was collected through RGB sensors, while moving along the time sequence. In addition, the presence of anomalies was verified through the comparison study between the detection results and the representative circadian cycle of the color temperature by solar term. The judgment method for the anomalies from the measured color temperature of natural light was proposed for the first time, confirming that the proposed method was capable of detecting the anomalies with an average accuracy of 94.6%.

Influence of various photoperiods on stress hormone production, immune function, and hematological parameters in ICR mice (광주기 변화에 따른 마우스의 스트레스 호르몬, 면역기능 및 혈액학적 지표에 미치는 영향)

  • Park, Seung-Hyu;Kim, Il-Gyue;Kim, Hyung-Chan;Gang, Mi-Jeong;Son, Song-Ee;Lee, Hu-Jang
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • In the present study, the effects of different photoperiods on stress, immunity, and hematological parameters in ICR mice were evaluated. Fifty male ICR mice 7 weeks old (body weight, $27.3{\pm}2.5g$) were divided into five groups: DP-0 (0/24-h light/dark cycle), DP-6 (6/18-h light/dark cycle), DP-12 (12/12-h light/dark cycle), DP-18 (18/6-h light/dark cycle), and DP-24 (24/0-h light/dark cycle). During the experimental period, no significant differences in body weight or feed intake were observed between the groups. Hematological analysis revealed that white blood cell, red blood cell, and hemoglobin values for the DP-0 group were significantly different compared to those of the other groups. After 28 days, no significant difference in serum cortisol concentration was observed among the groups, but serum cortisol levels increased in a light exposure-dependent manner. Total serum immunoglobulin G (IgG) concentrations of the DP-0 and PD-6 groups were significantly increased compared to those of the other groups (p < 0.05), and serum total IgG levels decreased in a light exposure-dependent manner. Results of the present study indicated that various photoperiods affect hematological parameters and total serum IgG levels in ICR mice while having no significant effects on body weight, feed intake, or cortisol levels.

Measuring Particle Number from Light-duty Diesel Vehicles in WLTP Driving Cycle (WLTP 주행모드에서의 경유차 입자상물질 개수 배출 특성)

  • Park, Junhong;Lee, Jongtae;Kim, Jeongsoo;Kim, Sunmoon;Ahn, Keunhwan
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UN ECE since 2007. The test procedure is expected to be applied to Korean light-duty diesel vehicles at the same time of adoption in Europe. The air pollutant emissions from light-duty vehicles have been regulated with weight per distance travelled which means the driving cycles can affect the results. The six Euro-5 light-duty diesel vehicles including sedan, SUV and truck have been tested with WLTP, NEDC which is used for emission certification for light-duty diesel vehicles, and CVS-75 to estimate how much particle number emission can be affected by different driving cycles. The averaged particle number emissions have not shown statistically meaningful difference. The maximum particle number emission have been found in Low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of particle number emission in cooled engine condition is much different as test vehicles. It means different technical solution is required in this aspect to cope with WLTP driving cycle.

A Study on Evaluating a Representative Smoke Value from an Inspection Vehicle Using Integration Method over a Cycle of Free-Acceleration Test Mode (무부하 급가속 측정 사이클로 운전되는 검사 대상 디젤 차량으로부터 배출되는 매연값 적분에 의한 차량 매연 대표값 특성 연구)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.132-139
    • /
    • 2013
  • Smoke emissions from light duty diesel vehicles were measured using light extinction method with the free acceleration test mode. The smoke emissions for each measurement cycle of the free acceleration method showed large variations according to driver's pedal pushing pattern. The smoke values for each measurement cycle initially increased and reach a peak value. Integration of the smoke emissions with time for each measurement cycle was performed to get a representative smoke value which was obtained by averaging the integrated results. Two kinds of integration time range were used. One is range over the whole measurement cycle of the free acceleration method. The other is only the acceleration range in the measurement cycle. Overall, variation of the representative smoke values obtained by the integration method was reduced comparing to the traditional representative smoke value which was obtained from a peak smoke value over the measurement cycle. Ten vehicles of the same model with 2.5 liter diesel engines, and seven vehicles of the same model with 2.7 liter diesel engines, were tested using the free acceleration test method.

A STUDY ON THE LIFE CYCLE COST ANALYSIS IN LIGHT RAIL TRANSIT BRIDGES: FOCUSED ON SUPERSTRUCTURE

  • Lee Du-heon;Kim Kyoon-tai;Kim Hyun Bae;Jun Jin-taek;Han Choong-hee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.30-40
    • /
    • 2007
  • The demand for light-rail construction projects has recently been increasing, and they are mostly supervised by private construction companies. Therefore, a private construction company that aim to raise gains from the operation of the facilities during the contract period greater than what they invested should b able to accurately calculate the costs from the aspect of Life Cycle Cost (LCC). In particular, a light-rail transit bridge that has a heavier portion from the aspect of the cost of light-rail transit construction requires a more accurate calculation method than the conventional LCC calculation method. For this, an LCC analysis model was developed and a cost breakdown structure was suggested based on literature review. The construction costs by shape of the upper part of a light-rail transit were calculated based on the cost breakdown system presented in this paper, and the cost generation cycle and cost unit price were collected and analyzed based on records on maintenance costs, rehabilitation and replacement. In addition, after forming some hypotheses in order to perform the LCC analysis, economic evaluation was conducted from the aspect of the LCC by using performance data by item.

  • PDF

A study on the Life Cycle Cost reduction of the LRT's power systems based on the advanced Systems Engineering (시스템엔지니어링 기법 적용에 따른 경량전철 전기시스템의 생명주기비용 절감에 관한 연구)

  • Choi, Won-Chan;Bae, Joon-Ho;Heo, Jae-Hun;Joo, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1434-1439
    • /
    • 2011
  • The purpose of this study is based on the optimize the system life cycle cost apply to the advanced systems engineering techniques consideration thought to the system life cycle for the power system which is the one of the major component of the light rail transit system. Generally, the systems engineering techniques apply to the LRT's power systems are not optimize the whole life cycle cost of the power systems because systems engineering management activities are concentrate in performing the key-technology oriented at the construction stage of the dedicated power systems for light rail transit. Through this study, All the stakeholders can be utilize a this advanced systems engineering techniques which is fully considered the life cycle cost through the considering in whole system life cycle (such as concept, design, operation, maintenance and dispose stage as well as construction stage) and adopted by KSX ISO/IEC 15288 system life cycle processes.

  • PDF

Real Time Traffic Signal Plan using Neural Network

  • Choi Myeong-Bok;Hong You-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.360-366
    • /
    • 2005
  • In the past, when there were few vehicles on the road, the T.O.D.(Time of Day) traffic signal worked very well. The T.O.D. signal operates on a preset signal cycling which cycles on the basis of the average number of average passenger cars in the memory device of an electric signal unit. Now days, with increasing many vehicles on restricted roads, the conventional traffic light creates startup-delay time and end-lag-time. The conventional traffic light loses the function of optimal cycle. And so, $30-45\%$ of conventional traffic cycle is not matched to the present traffic cycle. In this paper we proposes electro sensitive traffic light using fuzzy look up table method which will reduce the average vehicle waiting time and improve average vehicle speed. Computer simulation results prove that reducing the average vehicle waiting time which proposed considering passing vehicle length for optimal traffic cycle is better than fixed signal method which doesn't consider vehicle length.

Growth Characteristics of Ultrahigh-density Microalgal Cultures

  • Richmond, Amos
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.349-353
    • /
    • 2003
  • The physiological characteristics of cultures of very high cell mass (e.g. 10g cell mass/L), termed“ultrahigh cell density cultures”is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m$\^$-2/ day$\^$-1/) productivity. Cell-growth inhibition (GI) unfolds as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0cm OP reactor could produce ca. 50% more than reactors with longer OP, e.g. 5 or 10cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP of ca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell growth inhibition in the culture, the exact nature of which is awaiting detailed investigation.

Action Spectra for Light-Induced De-Epoxidation and Epoxidation of Xanthophylls in Spinach Leaf

  • Lee, Kang-Ho
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.1-7
    • /
    • 1968
  • The action Spectra for violaxanthin de-epoxidation and zeaxanthin expoxidation in New Zealand spinach leaf segments Tetragonia expansa, were determined at equal incident quanta of $2.0{\times}10^{15}$ quanta $cm^{-2}$ $second^{-1}$. The action spectrum for de-epoxidation had major peaks at approximately 180 and 648 nm. Blue light was slightly more effective than red light and little activity was observed beyond 700 nm. The action spectrum for epoxidation showed major peaks at around 441 and 670 nm. Blue light was more effective than red light and light beyond 700 nm showed definite activity. The net result of de-epoxidation and epoxidation is a cyclic scheme, the violaxanthin cycle, which consumes $O_2$ and photoproducts. The action spectra indicate that the violaxanthin cycle is more active m clue than in red light and therefore could accout for $O_2$ uptake stimulated by blue light. The differences between the action spectra for de-epoxidation suggest that possibly two photosynthetic systems are involved. It was suggested that the violaxanthin cycle may functional a pathway for the consumption of excess photoproducts generated in blue light or the conversion of these photoproducts to other forms of energy.

  • PDF

Synchronization of Cell Cycle in Korean Hydrogen Producing Cyanobacterial Strains (한국산 수소생산 남세균 종주들의 세포주기 동조화)

  • Park, Jong-Woo;Ahn, Se-Hee;Kim, Hyung-Seop;Yih, Won-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.663-670
    • /
    • 2011
  • Under a daily photoperiod of 14h light and 10h dark synchronization of cell cycle in Korean Cyanothece spp. strains and $Synechococcus$ sp. strain Miami BG043511 was analyzed as to be applicable to enhanced hydrogen production. For all strains peaks of double cell were observed during the light period of a daily cycle. Peaks of maximal cell size measured by a coulter counter appeared at the peak of double cells observed under light microscope reconfirming the synchronization of daily cell cycle. The cell cycle synchronization became weakened within two days when treated with continuous illumination. Rapid detection of the peak time of double cell percentage by coulter counters may contribute to quasi-realtime feedback control for efficient production of photobiological hydrogen by unicellular cyanobacterial strains.