• Title/Summary/Keyword: light cycle

Search Result 610, Processing Time 0.032 seconds

A Study on System Engineering of Light Rail Transit Private Investment Projects (경량전철 민간투자사업의 시스템엔지니어링 연구)

  • Cha, Gi-Ho;Park, Jin-Jae;Lee, Jae-Hyeong;Chu, Dong-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.517-544
    • /
    • 2011
  • Promote competition in local government and the construction of a subway construction in the vicious cycle of debt due to the operating deficit as a greater burden on local finances was leave. This government policy of public transport in the center of the metro construction costs affordable and to respond appropriately to public transport demand new transit LRT(Light rail Transit) by introducing the current Busan was the opening of Line 4, yongin line, Busan - Gimhae line, parliamentary and barge construction or ready for the opening. What is light rail, compared to the existing subway and cheaper construction cost, the existing road or bridge that runs along the track is installed, etc. Manless system construction cost and operating expenses as a possible new railway transportation has been a leading state-of-the-art mad. However, the domestic business system engineering of light rail-related companies in the developed countries are doing to advance to the national to the local engineering skills of the self-free, hurry will have to be secured. Therefore, this paper applies local light rail project on the status of the systems engineering analysis and based on this source of the latest engineering technology-intensive systems engineering to provide direction to the development of technology.

  • PDF

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

A Study on Characteristics of Exhaust Emissions in a Diesel Engine with Improved Rice Bran Oils as a Fuel (디젤기관에 있어서 개선 미강유 연료의 배기 배출물 특성에 관한 연구)

  • 배명환;하정호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.12-23
    • /
    • 2004
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled agricul-tural diesel engine operating at several loads and speeds. The experiments are conducted with light oil, rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$ BTDC regardless of fuel types, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oils is lower than that of pure rice bran oil, and NO$_{x}$ emissions of light oil are the lowest and those of pure rice bran oil are the high- est, while soot emissions of light oil are the highest and those of pure and improved rice bran oils are lower than that of light oil. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as fuels in diesel engines.s.

Effect of Red and Infrared LED Light Therapy on Allergic Rhinitis (알레르기 비염 환자에서 적색 및 근적외선 LED 광선 치료 효과)

  • Park, Eal Whan
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.125-131
    • /
    • 2019
  • As a non-invasive method for alleviating allergic rhinitis, there has been a recent ongoing research in the treatment of light from light emitting diodes (LEDs) and lasers. A total of 15 subjects diagnosed with allergic rhinitis were selected for this study. Red and near infrared light emitted from LEDs with wavelengths of 660nm and 940nm were illuminated three times daily (three minutes per cycle) for a total of two weeks. The degree of nasal congestion, runny nose, sneezing and nasal itching was evaluated by questionnaires before and after the test. Also, the serum IgE (Immunoglobulin E) was measured and compared before and after the test. As a result, the total score of symptoms of allergic rhinitis was decreased by 67% after the test (P<0.01). The level of IgE was decreased by 17% after the test (P<0.05). In conclusion, the non-invasive LED phototherapy method using red and near-infrared LED light was effective in alleviating symptoms of allergic rhinitis. There were no adverse effects or complications reported during and after the test.

The Effects of Light on the Production of hGM-CSF in Transgenic Plant Cell Culture (빛 조사시간에 따른 형질전환된 담배세포 성장과 hGM-CSF의 생산에 미치는 영향)

  • 이재화;이재화;김영숙;홍신영;신윤지;서조은;권태호;양문식
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.568-572
    • /
    • 2001
  • Light is one of the most important environmental factors controlling plant physiology. The human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was produced from cell suspension cultures of transgenic tobacco under different light conditions (24 hr light, 18 hr light/dark cycle, dark). Under 24 hr light condition, cell growth was best and dry cell weight reached 14.4 g/L. Light did not influenced the secretion of total proteins. However, in the dark condition, the ratio of secreted total protein/dry cell weight was 1.5 fold higher than those of ethel conditions. Production of hGM-CSF was highest with 18 hr light condition and reached 496.5 ug/L. In addition, the content of hGM-CSf in secreted total proteins was 1.8 fold higher than that of 24 hr light condition, which is beneficial for the purificationof the protein.

  • PDF

CORE DESIGN CONCEPTS FOR HIGH PERFORMANCE LIGHT WATER REACTORS

  • Schulenberg, T.;Starflinger, J.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modem fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with $380^{\circ}C$ core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around $500^{\circ}C$, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors.

Annual Reproductive Cycle of Acheilognathus rhombeus, in Korea

  • Ki, Se-Un;Kho, Kang-Hee;Lee, Won-Kyo
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • In this study, an experiment was conducted to investigate the annual reproductive cycle of a Korean flat bittering, Acheilognathus rhombeus, from Ogok-myeon located in Seomjin River. The reproductive cycle was examined histologically regarding water temperature and day length of the habitat, the gonadosomatic index (GSI), and developmental characteristics of female and male gonads. The maximum GSI was found to be 3.50±0.53 and 1.36±0.14 for females and males, respectively, when the water temperature and day light was 16.9℃ and 11.3 hours, respectively in October 2018. On the other hand, the minimum GSI was found to be 0.16±0.09 and 0.69±0.15 for males and females in December 2018 and February 2019, respectively. The ovipositor of females appeared from August to November 2018. We compared and calculated the stages of germ cell developmental characteristics in the testis and ovaries to determine the reproductive cycle. According to the result, we classified the female A. rhombeus reproductive cycle into four phases, which are ripe and spawning phase (October), degenerative phase (November to December), growing phase (January to March) and mature phase (April to September). The annual reproductive cycle of male A. rhombeus was categorized into four phases: mature phase (June to October), degenerative phase (November to March), resting phase (April) and growing phase (May). The Korean flat bittering is an autumn-spawner as the main spawning season in October. In male, testicular spermatogonia appeared all year-round, and the ripe and releasing phase, which is characteristics of the spawning season in other fish, did not appear.

Changes in Growth Characteristics of Seven Foliage Plants Grown in an Indoor Bio-Wall System Depending on Irrigation Cycle

  • Han, Cheolgu;Shim, Ie-Sung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.179-189
    • /
    • 2020
  • In order to increase the indoor air purification effect of plants, plants need to be placed on 5-10% of indoor spaces. To increase the density and utilization of plants in indoor spaces, studies on bio-wall, a vertical green wall system, have been recently conducted. The purpose of this study was to investigate the growth characteristics of 7 indoor plants introduced to the system and their rooting zones at different irrigation cycles. This study was conducted to investigate a proper irrigation cycle for the continuous maintenance of bio-wall systems. The conditions of their growth environment were maintained as follows: light intensity, 20-50 μmol·m-2·s-1 PPFD; and temperature, 20 - 25℃. For fertilization, Hyponex diluted with water at the ratio of 1:1,000 was supplied to plants. Irrigation was treated at intervals of 1, 3, 5, and 7 days for 1 hour at a time. As a result, there was no significant difference in the growth of plants between different irrigation cycles. Dieffenbachia 'Marianne' showed a significant decrease in the number of leaves at the irrigation cycle of 7 days. In addition, the chlorophyll content was relatively low at the irrigation cycle of 7 days. In terms of the color of leaves, a decrease in L value and b value and an increase in a value were observed, resulting in changes in brightness and color. Ardisia pusilla 'Variegata' showed a slightly higher photosynthetic activity and stomatal conductance when it was watered every day and once per 5 days, while Epipremnum aureum showed a relatively higher photosynthetic activity and stomatal conductance at the irrigation cycle of 3 days. In the case of root activity, it was found that the longer irrigation cycle, the higher root activity compared to daily irrigation. The development of roots of Peperomia clusiifolia was promoted by watering at long intervals. However, in the case of Aglaonema 'Siam-Aurora', the total number of roots decreased at the interval of 7 days. In conclusion, a proper irrigation cycle for the sustainable maintenance of vertical bio-wall systems seems to be 3 days.

Human Circadian Rhythms (인체의 일주기리듬)

  • Lee, Hyunah;Cho, Chul-Hyun;Kim, Leen
    • Sleep Medicine and Psychophysiology
    • /
    • v.21 no.2
    • /
    • pp.51-60
    • /
    • 2014
  • A 'circadian rhythm' is a self-sustained biological rhythm (cycle) that repeats itself approximately every 24 hours. Circadian rhythms are generated by an internal clock, or pacemaker, and persist even in the absence of environmental time cues, collectively termed 'zeitgebers.' Although organisms generate circadian rhythms internally, they are entrained by environmental stimuli, particularly the light-dark cycle. Measurement of the endogenous melatonin rhythm provides relatively reliable surrogate way of assessing the timing of the internal circadian clock. Also, core body temperature and cortisol can be used as markers of circadian rhythms. The sleep-wake cycle, body temperature, and melatonin rhythm have a stable internal phase relationship in humans and other diurnal species. They play an important role in controlling daily behavioral rhythms including task performance, blood pressure, and synthesis and secretion of several hormones. In this review, we address not only the properties, methods of measurement, and markers of circadian rhythms, but also the physiological and psychological importance of human circadian rhythms.