• 제목/요약/키워드: lifting task

검색결과 67건 처리시간 0.029초

모 선박용 디젤 엔진 제조업체를 대상으로 ACGIH Lifting TLV®의 현장 적용 및 평가 (Field Application and Evaluation of the ACGIH Lifting TLV®)

  • 김선자;신용철;강동묵
    • 한국산업보건학회지
    • /
    • 제15권3호
    • /
    • pp.176-182
    • /
    • 2005
  • American Conference of Governmental Industrial Hygienists (ACGIH) adopted the Lifting Threshold Limit Values ($TLVs^{(R)}$) in 2005 as a guideline for protecting the workers from work-related low back and shoulder disorders associated with repetitive lifting tasks. The TLVs consist of three tables with recommended weight limits for lifting tasks and their determination procedures are simple. The TLVs sans the material weight/the recommended values (LITLVs) were obtained from 45 lifting tasks in ship engine manufacturing factories. These values were compared and correlated with the Recommended Weight Limits (RWLs) and lifting indices (LIs) determined by the Revised Lifting Equation (LE) of the National Institute for Occupational Safety and Health (NIOSH). The average ratio, LITLVs/LIs, was 0.8 (LITLVs: $1.3{\pm}0.8$, LIs: $1.6{\pm}0.7$). Thus, the TLVs underestimated the risk than the LE. The LITLVs were highly correlated with LIs (r=0.82). The predicted value of LITLVs when LIs=1 wa 0.76. Using the predicted TLVs the higher risk ones of a large number of tasks can be screened to be further investigated.

The Effect of a Task-oriented Upper Arm Exercise on Stable and Unstable Surfaces on Dynamic Balance and Hand Function in Patient with Cerebral Palsy

  • Han, Yong-Gu;Yun, Chang-Kyo
    • The Journal of Korean Physical Therapy
    • /
    • 제29권2호
    • /
    • pp.55-61
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of a task-oriented upper arm exercise performed in a sitting position on either an unstable support surface or a stable support surface for children with cerebral palsy. Methods: We prospectively evaluated 18 children with cerebral palsy. Eight subjects were randomly assigned to each of the stable and unstable support surface groups. We performed the upper arm exercise three times a week for 6 weeks. To confirm the effects of the intervention, the berg balance scale test, modified functional reaching test (MFRT), timed up and go test (TUG), and Jebsen-Taylor hand function test were conducted before and after the study. Results: Significant differences were observed in MFRT and TUG between the experimental and control groups (p<0.05). In the Jebsen-Taylor hand function test, there were significant differences between the groups for the items picking up small objects, stacking checkers, lifting large light objects, and lifting large heavy objects (p<0.05), but not for writing and stimulation of feeding. Significant differences were observed between the groups in items of card turning, lifting large light objects, and lifting heavy objects. Conclusion: The purpose of this study was to evaluate the effectiveness of a task-oriented upper extremity exercise program for dynamic balance and hand function performed in a sitting position with either stable or unstable support by cerebral palsy patients. There were improvements in the two groups, but performing the exercise while sitting on an unstable support surface had a greater effect on dynamic balance and hand function than exercise while sitting on a stable supporting surface. The results of this study can be used to improve the daily lives of cerebral palsy patients.

Comparison of Compressive Forces on Low Back(L5/S1) for One-hand Lifting and Two-hands Lifting Activity

  • Kim, Hong-Ki
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.597-603
    • /
    • 2011
  • Objective: The objective of this study was to compare one-hand and two-hands lifting activity in terms of biomechanical stress for the range of lifting heights from 10cm above floor level to knuckle height. Background: Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lifting tasks using both a one-handed as well as a two-handed lifting technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lifting tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lifting tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 43%, as the workload was increased twice from 7.5kg to 15.0kg. For the right-hand lifting task, these were increased by the average 34%. For the two-hands lifting tasks, these were increased by the average 25%. The lateral shear forces at L5/S1 of one-hand lifting tasks, notwithstanding the half of the workload of two-hands lifting tasks, were very high in the 300~317% of the one of two-hands lifting tasks. The moments at L5/S1 of one-hand lifting tasks were 126~166% of the one of two-hands lifting tasks. Conclusion: It is concluded that the effect of workload for one-hand lifting is greater than two-hands lifting. It can also be concluded that asymmetrical effect of one-hand lifting is much greater than workload effect. Application: The results of this study can be used to provide guidelines of recommended safe weights for tasks involved in one-hand lifting activity.

자동차 조립 부서 Manual Lifting 작업에 관한 인간공학적 연구 (An Ergonomic Study on Manual Lifting Tasks in Motor Assembly Processes)

  • 권은혜;백남원
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.1-23
    • /
    • 1998
  • Work-related Low Back Pain(LBP) is one of tile most important Issues in the field of industrial safety and health. Particularly, manual lifting is known as a major cause of work-related LBP and impairment. Total number of 163 manual lifting tasks in motor assembly processes were investigated. The 1981 and the 1994 equations developed by National Institute for Occupational Safety and Health(NIOSH) were applied to evaluate potential hazards of lifting-related LBP. Comparisons between the 19R I and 1994 NIOSH criteria were made. The relationships between the NIOSH criteria and lifting-related LBP were also analyzed. The results of this study are as follows: 1. The values of Action Limit(AL) by the NIOSH 1981 lifting equation. Recommended Weight Limit(RWL) by the 1994 equation and the weight of the load handled at each manual lifting task were shown log-normal distributions. 2. LI'(the weight of tile load/AL) and LI(the weight of the load/RWL) were calculated estimate the physical stress imposed by each individual lifting task. As a result. 76.7% of the total LI' value exceeded 1 and 12.9% exceeded 3, and 84.7% of the total LI values exceeded 1 and 20.9% exceeded 3. 3. Bus 2 Department showed the highest rate of LI'>1 and LI>1 and Bus 1 Department showed the highest rate of LI'>3 and LI>3 4. In general, the RWLs by the 1994 equation were found lower than the ALs by the 1981 equation. It is assumed to he resulted from the fact that the 1994 equation includes methods evaluating asymmetrical lifting tasks and lifts of objects with less then optimal hand-container couplings, and also covers a larger range of work durations and lifting frequencies than the 1981 equation. 5. Significant correlations were found between LI' and incidence of LBP (R=0.734, p<0.05). LI and incidence of LBP(R=0.671. p<0.10) and load-weights and incidence of LBP(R=0.797, p<0.05). 6. Control measures are required to achieve the value of LI less than 1 for some tasks having high LI values. Engineering control is highly recommended for some tasks having the value of LI above 3.

  • PDF

인력물자취급의 권장안전하중에 대한 생리학적 고찰 (Physiological viewpoint of the recommended safe weights of load for manual materials handling tasks)

  • 김홍기
    • 대한인간공학회지
    • /
    • 제16권3호
    • /
    • pp.23-36
    • /
    • 1997
  • The objective of this study was to make a comparison of the oxygen consumption rates during the lifting activities and the physiological criteria of the recommended weights of RWL, AL, and MPL by NIOSH Guideline. The physical Work Capacity (PWC) based on the bicycle ergometer was 2562.71ml/min, and the one based on the treadmill was 2874.89ml/min for the college male students of Korea. Lifting activities with four different lifting frequencies(2, 5, 8, 11 lifts/min) for one lifting range from floor to 76cm height were studied. The oxygen consumption rates and the heart rates were measured or recorded while subjects were lifting the weight of RWL, AL, and MPL. The heart rates and the oxygen consumption rates increased as the frequency increased from 2 to lifts/min. However, those slightly decreased at the frequency of 11 lifts/ min. The measured oxygen consumption rates were ranging from 2.3% to 29.6% higher than the physiological criteria 620, 700, and 1000ml/min, respectively, of the RWL, AL, and MPL for all the lifting frequencies (5, 8, 11 lift/min) except 2 lifts/min. It si suggested that the physiological criteria of NIOSH Guideline should be based on the lifting PWC, which can consider the type of lifting activity and the frequency of the task, rather than using the PWC by ergometer or treadmill. The measured oxygen consumption rates were ranging from 13.26% to 40.11% higher than the values estimated using the models by Garg and Kim. From these findings it is suggested that the NIOSH Equation should not be directly applied to Korean without resonable modifications.

  • PDF

Effect of Trunk and Upper Arm Angle on Lifting Capacity

  • Chang, Seong Rok
    • International Journal of Safety
    • /
    • 제10권1호
    • /
    • pp.32-35
    • /
    • 2011
  • Lifting capacity and difficulty of task are influenced by body posture. In RULA and REBA, the body was divided into segments which formed two groups, A and B. Group A includes the upper and lower arm and wrist while group B includes the neck, trunk and legs. This ensures that whole body posture is recorded so that any awkward or constrained posture of the legs, trunk or neck which might influence the posture of the upper limb. This study aimed to measure MVC (maximum voluntary contraction) and subjective judgment in psychophysical method (Borg's scale) according to trunk and upper arm angle and to analyze results statistically. The results of this study were that lifting capacity was more influenced by interaction of body posture rather than angles of each part, and MVC variation according to trunk and upper arms angles should different patterns. This means that we consider the interaction of trunk angles and upper arm angles when we access risk factors of the postures. This survey would be also the basic data to evaluate difficulty of lifting tasks according to body postures ergonomically.

  • PDF

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • 제2권3호
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

어깨위로 들어올리기 작업시 의도적인 복근수축이 요부근 활성도와요추신전각도에 미치는 영향 (Effects of Intentional Abdominal Muscle Contraction on Lumbar Muscle Activities andLumbar Extension During Lifting Above the Shoulders)

  • 김희원;권오윤;이충휘;전혜선
    • 대한인간공학회지
    • /
    • 제25권2호
    • /
    • pp.147-154
    • /
    • 2006
  • This study was conducted to evaluate the effect intentional contraction of abdominal muscles during lifting above shoulder on the muscles activities of the lower trunk and on the degree of lumbar extension. Fifteen healthy adult males were selected as test subjects. A 5kg weight was raised to the shoulder level, 20cm, and 40cm above the shoulder level. EMG activities of all muscles except the rectus abdominis were significantly greater when subjects were asked to contract their abdominal muscles intentionally during lifting(p<0.05). Degree of lumbar extension also significantly decreased with intentional abdominal contraction during the lifting. Also, degree of lumbar extension significantly increased with increase in lifting height(p<0.05). The results of this study show that intentional contraction of abdominal muscles during lifting above shoulder increases the EMG activities of external abdominis oblique, internal abdominis oblique, and erector spinae.

악력의 인간공학적 평가를 위한 접근 방법 -들기 작업 자세의 경우- (An Approach to Ergonomics Evaluation of Grip Strength - Case by the Manual Lifting -)

  • 양성환;갈원모;박범
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.209-213
    • /
    • 1997
  • Manual lifting techniques are commonly defined in terms of the postures adopted at the start of the lift. Quantitative definition is problematic, however, because the absolute joint angles adopted to lift an object are influenced by task parameters, such as the initial height of the load. The main objective of this study is to investigate the grip strength of the both hands at the initial lifting points. The survey is conducted by measuring the compression force, anthropometric data and grip strength at the lifting postures for the subjects(n=50) who is assigned to their job as usual. The experiment is peformed at the four lifting postures which involving the combination of two horizontal factors(H1 : 35 cm, H2 : 55 cm) and two vertical factors(V1 : 20~80 cm, V2 : 47~102 cm). The analysis result of lifting posture indicated that each H1-V1, H2-V1 combinations are about 60$^{\circ}$ and each H1-V2, H2-V2 combinations are about $30^{\circ}$. There are significant differences on grip strength between $60^{\circ}$ and $30^{\circ}$ stooped posture. The results of this study can be provided a method defining lifting postures at the minimum grip strength. Also, it is eliminated a hazard of the injuries which are cumulative trauma disorders(CTDs) and back pain, increased a productivity and improved a welfare of workers.

  • PDF

들기/내리기 작업 시 소음과 배경음악이 몸통근육 피로도에 미치는 영향 (The Effect of Noise and Background Music on the Trunk Muscle Fatigue during Dynamic Lifting and Lowering Tasks)

  • 김정룡;신현주;이인재
    • 대한인간공학회지
    • /
    • 제27권3호
    • /
    • pp.15-22
    • /
    • 2008
  • The purpose of this study was to define the effects of noise and background music on the trunk muscle fatigue during dynamic lifting and lowering tasks. Six healthy male subjects with no prior history of low back disorders participated in this study. The participants were exposed to two levels of background noise such as 40dB noise and 90dB noise and three levels of background music such as no music, slow music, and fast music. Six different combinations of background noise and background music were played while the participants were performing the lifting task at 15% level of Maximum Voluntary Contraction. Electromyography signals from six muscles were collected and fatigue levels were analyzed quantitatively. In results, the 90dB noise increased trunk muscle fatigue and slowed down the recovery. The trunk muscle fatigue was the lowest when the fast music was played for as background. After recovery, the 90dB noise increased trunk muscle fatigue. The trunk muscle fatigue was the lowest when the slow music was played for as background. The results can be useful to manage the cumulative fatigue of trunk muscles due to background noise and music during repetitive lifting and lowering tasks in industry.