• Title/Summary/Keyword: life safety code

Search Result 122, Processing Time 0.023 seconds

A comparative Review between the English Language Programs of Maritime Institutes in Korea and Europe

  • Davy, James G.;Noh, Chang-Kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.19-20
    • /
    • 2011
  • This paper compares the English language programs of two maritime institutes in very different parts of the world, South Korea and Belgium. It will show that although both institutes comply with the minimum standard set by the STCW Code issued by the IMO, requirements for entry and graduation can vary greatly. Method of class delivery, choice of learning tools and testing systems will also be examined to illustrate these differences. It will also shown that in order to train new seafarers in the best possible ways that will fulfill the IMO mandate of Safer Shipping and Cleaner Oceans, examination of course curriculum at any maritime institute should be an ongoing process so that cadets are encouraged to communicate in a targeted, efficient and professional way within a nautical context.

  • PDF

The need for upgrading the seismic performance objectives

  • Kutanis, Mustafa;Boru, Elif Orak
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.401-414
    • /
    • 2014
  • The economic consequences of large earthquakes require a revolutionary change in the seismic performance objective of residential and commercial buildings. The majority of total construction costs consist of non-structural and architectural costs. Therefore, the aim of this research is to upgrade current Life Safety performance objectives and to offset adverse effects on country's economy after an occurrence of large earthquakes. However, such a proposal cannot easily prove the feasibility of cost-benefit analysis in structural design. In this paper, six generic reinforced concrete frames and dual system structures designed based on Turkish Seismic Code were used in cost analysis. The study reveals that load bearing structural systems with Immediate Occupancy performance level in seismic zones can be achieved with negligible costs.

Study on Preliminary Structural Design of Light Weight Small Scale WIG Craft (경량화 소형 위그선 구조 예비 설계에 관한 연구)

  • Kong, Changduk;Park, Hyunbum;Kim, Juil;Lee, Seunghyeon;Yun, Jae-Hwi
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.36-44
    • /
    • 2007
  • This study was performed on preliminary structural design of a small scale WIG craft which has been developed as a next generation high speed maritime transportation system in Korea. A composite structure design using the foam-sandwich for main wing and tail fins and the honeycomb sandwich and skin-stringer-ring frame for fuselage was applied for weight reduction as well as structural stability. A commercial FEM code, NASTRAN for was utilized to confirm the structural safety for the reiterate design modifications to meet design requirements including the target weight. Each main wing was jointed with the fuselage by eight high strength insert bolts for easy assembling and disassembling as well as for assuring the required 20 years service life. For control surface structural design, the channel type spar, the foam sandwich skin and the lug joint were adopted.

  • PDF

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

Finite Element Analysis of Mechanical Properties of a Balloon-Expandable Stent (풍선확장식 스텐트의 기계적 특성에 대한 유한요소해석)

  • Oh, Byung-Ki;Cho, Hae-Yong;Kim, Yong-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.915-922
    • /
    • 2004
  • A stent is small tube-like structure expanded into stenotic arteries to restore blood flow. The stent expansion behaviors define the effectiveness of the surgical operation. In this paper, finite-element method was employed to analyze expansion behaviors and fatigue life of a typical diamond-shaped balloon-expandable stent. Beyond safety considerations, this type of analysis provides mechanical properties that are often difficult to obtain by experiments. Mechanical properties of the stent expansion pressure, radial recoil, longitudinal recoil and foreshortening were simulated using commercial FEM code, ANSYS and fatigue life were estimated using NISAII ENDURE. The FEM results showed that the pressures necessary to expand the stent up to a diameter of 3mm, 4mm and 5mm were 0.75MPa, 0.82MPa and 0.97MPa. The fatigue lifes according to expansion diameter were 114${\times}$10$^{7}$cycles, 714${\times}$$^{6}$cycles and 163${\times}$10$^{6}$cycles. As a result, a finite element model used in this study can simulate expansion behaviors of stents and should be useful to design new stents or analyze actual stents.

Analysis of Quality Change Based on Storage Conditions to Set the Use-by date of Bakery Breads (베이커리 식빵의 소비기한 설정을 위한 보관 방법에 따른 품질 변화 연구)

  • Sun Hye Hwang;Ji Yeon Choi;Min Joo Kim;Yong Sun Cho
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.236-245
    • /
    • 2023
  • In this study, the quality safety limit period of seven types of bakery bread was analyzed, and their use-by date was calculated. For evaluating product quality, storage conditions were set as 5, 15, 25, and 35℃ for 50 days, and moisture, microorganisms, sensory characteristics, and dominant bacteria were examined. The quality and safety standards followed the Korea Food Code and Korean industrial standards (KS). The results showed that all products stored at 5℃ satisfied the standard for bacterial count for day 50, but the sensory quality was below the standard level. Samples stored at 15℃ showed high variability from 3-39 days. At 25℃, a quality safety limit period of 2-20 days was set, and one sample was found to have the same shelf life. Bread stored at 35 ℃ had the shortest quality safety limit period. Considering a safety factor of 0.87, a use-by date period of 1.7-13.1 days was calculated. Therefore, setting the use-by date according to the product type is necessary, even for the same product category. Among the bread products sold in bakeries, those managed as room temperature products (1-35℃) can be distributed and stored in a temperature range of up to 35℃. Overall, this study demonstrates the importance of setting a quality retention period based on the product characteristics and carefully considering the safety factor.

The Incidence and Patterns of Unintentional Injuries in Daily Life in Korea: A Nationwide Study (우리나라 생활안전영역의 비의도적 손상 발생률 및 발생 양상)

  • Park, Kun-Hee;Eun, Sang-Jun;Lee, Eun-Jung;Lee, Chae-Eun;Park, Doo-Yong;Han, Kyoung-Hun;Kim, Yoon;Lee, Jin-Seok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.41 no.4
    • /
    • pp.265-271
    • /
    • 2008
  • Objectives: This study was conducted to estimate the cumulative incidence rate (CIR) of unintentional injuries in Korean daily life and to describe the pattern of unintentional injuries. Methods: The study population was the people who used the National Health Insurance because of injuries (ICD code: S00$\sim$T98) during 2006. The stratified sample according to gender, age and the severity of injury (NISS, New Injury Severity Score) was randomly selected. The questions on the questionnaire were developed as a reference for an international classification tool (ICECI, International Classification of External Causes of Injury). The questions included the locations of injury, the mechanisms of injury and the results of injury. Moreover, we used age, gender, region and income variables for analysis. Results: The CIR of unintentional injuries that occurred in daily life for 1 year per 100,000 persons was 17,606, and the CIR of severe injuries was 286. Many injuries were occurred at home (29.6%), public places (19.0%), school (13.7%) and near home (12.0%). The major mechanisms of injuries were slipping (48.8%), contact (14.0%), physical over-exertion (13.8%), and fall (6.6%). Infants and old aged people were vulnerable to injuries, and those who lived rural area and who were in a low income level were vulnerable too. Conclusions: We signified the risk groups and risk settings of unintentional injuries in Korean daily life. These results could contribute to establishing strategies for injury prevention and implementing these strategies.

Investigating the Impact of Storage Conditions on Dietary Fiber and Calcium Contents of Black Soybean Sunsik to Develop a Functional Labelling System (저장조건에 따른 기능성표시제도가 도입된 검은콩 선식 제품의 식이섬유 및 칼슘 함량 변화 관찰)

  • Kang-Pyo Lee;Ye-Won In;Ji-Hyun Im;Ok-Hwan Lee;Boo-Yong Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.273-278
    • /
    • 2023
  • This study aimed to predict the shelf life of black soybean Sunsik to develop a functional labeling system for the product. The Arrhenius equation was used to calculate the shelf life by examining alterations in the dietary fiber and calcium levels of black soybean Sunsik stored at 25, 35, and 50℃ for 0, 6, and 12 months. Dietary fiber and calcium analyses were performed according to the experimental methods specified in the Food Code of the Ministry of Food and Drug Safety. Both black soybean Sunsik (BS) and black soybean Sunsik containing nondigestible maltodextrin and calcium lactate (BSN) exhibited an upward trend in dietary fiber content after 12 months of storage, compared to their initial levels. During storage, the phytate in Sunsik degraded, releasing cations that facilitated the formation of new cross-links between pectic acid and middle lamella, which ultimately increased dietary fiber content. Conversely, the calcium contents of both BS and BSN decreased with prolonged storage. Based on these findings, the expected shelf life of BS and BSN was calculated as 15.65 and 28.34 months, respectively.

Biomechanical Analysis on Dynamic Back Loading Related with Low Back Disorders with Toggle Tasks in Leather Industry Low back (피혁제조 공정 중 토글 작업에서 요통과 관련된 요추 부하의 생체역학적 분석과 개선 방안)

  • Kim, Kyoo Sang;Hong, Chang-Woo;Lee, Dong Kyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Low back disorders (LBDs) have been the most common musculoskeletal problem in Korean workplaces. It affects many workers, and is associated with high costs to many companies as well as the individual, which can negatively influence even the quality of life of workers. The _evaluation of low back disorder risk associated with manual materials handling tasks can be performed using variety of ergonomic assessment tools such as National Institute for Occupational Safety and Health (NIOSH) Revised Lifting Equation (NLE), the Washington Administrative Code 296-62-0517 (WAC), the Snook Tables etc. But most of these tools provide limited information for choosing the most appropriate assessment method for a particular job and in finding out advantage and disadvantage of the methods, and few have been assessed for their predictive ability. The focus of this study was to _evaluate spinal loads in real time with lifting and pulling heavy cow leathers in variety of postures. Data for estimating mean trunk motions were collected as employees did their work at the job site, using the Lumbar Motion Monitor. Eight employees (2 males, 6 females) were selected in this study, in which the load weight and the vertical start and destination heights of the activity remained constant throughout the task. Variance components (three dimensional spaces) of mean trunk kinematic measures were estimated in a hierarchical design. They were used to compute velocity and acceleration of multiple employees performing the same task and to repetitive movements within a task. Therefore, a results of this study could be used as a quantitative, objective measure to design the workplace so that the risk of occupationally related low back disorder should be minimized.

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.