• Title/Summary/Keyword: life safety code

Search Result 123, Processing Time 0.026 seconds

RCV bogie frame structure safety evaluation according to UIC Code (국제 철도 연맹 규정(UIC Code)에 따른 RCV 대차 프레임 구조 안전성 평가)

  • Sang Cheol Rho;Ji Hyeong Park;Shin You Kang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.7-13
    • /
    • 2023
  • Nowadays, traffic congestion is emerging as a major problem due to the rapid population growth and the increase in automobiles. The train is a convenient means of transportation that can efficiently solve these problems. Trains have been developed in line with human aspirations for a long time, but research on safety is still insufficient. This study aims to check safety by conducting static tests and fatigue tests on bogie frames, and to help develop bogie frames in the future. For the static test, a strain gauge was attached to the point where the local stress concentration was expected beforehand, and the result value was derived, compared with existing theories, and expressed as a Goodman diagram. In the fatigue test, a total of 10 million loads were applied over three stages, and no cracks appeared in the non-destructive test conducted after each stage. Both tests were conducted according to the strict test method of the bogie frame presented by the UIC Code. It satisfied both fatigue life and strength evaluation criteria and was judged to be a bogie frame usable for safe train production.

Fretting-Wear Characteristics of Steam Generator Tubes by Foreign Object

  • Jo Jong Chull;Jhung Myung Jo;Kim Woong Sik;Choi Young Hwan;Kim Hho Jung;Kim Tae Hyung
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.442-453
    • /
    • 2003
  • This study investigates the safety assessment of the potential for fretting-wear damages on steam generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element modelings of U-tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. Also, discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube.

Development of a RBI Procedure and Implementation of a Software Based on API Code (I) - Qualitative Approach (API기준에 근거한 RBI 절차 개발 및 소프트웨어의 구현 (I) 정성적 접근법)

  • 심상훈;송정수;김지윤;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.66-72
    • /
    • 2002
  • During the last ten years, effort has been made for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. Hence, it was required to develop advanced methods which meet this need. RBI(Risk Based Inspection) methodology is one of the most promising technology satisfying the requirements in the field of integrity management. In this study, a qualitative assessment algorithm for RBI based on the API 581 code was reconstructed for developing an RBI software. The user-friendly realRBI software is developed with a module for evaluating qualitative risk category using the potential consequence factor and the likelihood factor.

Finite Element Analysis for Iron-Making Furnace (제철용 고로의 유한요소해석)

  • 이만승;백점기;이제명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.245-253
    • /
    • 2004
  • There has been recent demand for extending the life of age-degraded structures and equipment by such techniques as diagnosis, maintenance, safety assessment, and estimating residual life on iron-making plants and hydraulic, thermal, and nuclear power plants. These techniques take into account comprehensive scenarios that may cause malfunction and structural damage and allow an assessment of risk based on the likely scenarios. In particular the safety assessment and residual life estimation of age-degraded ships and equipment facilities require consideration of various factors such as mechanical and thermal stresses, corrosion, hardness, load variation due to changes of operating condition, crack generation and strength reduction of material by fatigue. In this study, a detail thermal stress analysis, one of useful techniques of safety assessment and maintenance, is performed on a blast furnace by using general FEM code (MSC/NASTRAN).

  • PDF

A Study on the Standard Code Systematization of Disaster Environmental Information Data for Earthguakes, Fires and Fine Dusts (지진·화재·미세먼지에 대한 재난환경 정보 데이터의 표준 코드 체계화 연구)

  • LEE, Yongsoo;Ryu, Sanghun;Ko, Hyun-A;Jeong, Insu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.27-32
    • /
    • 2019
  • Disaster Safety Management Information standardization and harmonization simplifies the process of disaster management (prevention, preparedness, response and recovery) to increase the efficiency of disaster management, it is necessary to minimize the people's life and property damage. Disaster safety standardization is to standardize disaster safety information in the past to respond to an uncertain future and systematically manage disaster safety accordingly. This study developed a standard code system to utilize disaster safety information such as earthquake, fire, and fine dust, which are of social interest among various and complex environmental disasters. It aims to support practitioners to conduct efficient disaster tasks in the event of a disaster.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

On using computational versus data-driven methods for uncertainty propagation of isotopic uncertainties

  • Radaideh, Majdi I.;Price, Dean;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1148-1155
    • /
    • 2020
  • This work presents two different methods for quantifying and propagating the uncertainty associated with fuel composition at end of life for cask criticality calculations. The first approach, the computational approach uses parametric uncertainty including those associated with nuclear data, fuel geometry, material composition, and plant operation to perform forward depletion on Monte-Carlo sampled inputs. These uncertainties are based on experimental and prior experience in criticality safety. The second approach, the data-driven approach relies on using radiochemcial assay data to derive code bias information. The code bias data is used to perturb the isotopic inventory in the data-driven approach. For both approaches, the uncertainty in keff for the cask is propagated by performing forward criticality calculations on sampled inputs using the distributions obtained from each approach. It is found that the data driven approach yielded a higher uncertainty than the computational approach by about 500 pcm. An exploration is also done to see if considering correlation between isotopes at end of life affects keff uncertainty, and the results demonstrate an effect of about 100 pcm.

Integrity Evaluation for Stud Female Threads on Pressure Vessel according to ASME Code using FEM (유한요소해석에 의한 ASME Code 적용 압력용기 스터드 암나사산의 건전성 평가)

  • Kim, Moon-Young;Chung, Nam-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.930-937
    • /
    • 2003
  • The extension of design life among power plants is increasingly becoming a world-wide trend. Kori #1 unit in Korea is operating two cycle. It has two man-ways for tube inspection in a steam generator which is one of the important components in a nuclear power plant. Especially, stud bolts fur man-way cover have damaged by disassembly and assembly several times and degradation for bolt materials for long term operation. It should be evaluated and compared by ASME Code criteria for integrity evaluation. Integrity evaluation criteria which has been made by the manufacturer is not applied on the stud bolts of nuclear pressure vessels directly because it is controlled by the yield stress of ASME Code. It can apply evaluation criteria through FEM analysis to damaged female threads and to evaluated safety fer helical-coil method which is used according to Code Case-N-496-1. From analysis results, we found .that it is the same results between stress intensity which got from FEM analysis on damaged female threads over 10% by manufacture integrity criteria and 2/3 yield strength criteria on ASME Code. It was also confirmed that the helical-coil repair method would be safe.

Minimum Thickness of Long-Span RC Deck Slabs for 2-girder Bridges Designed by 80 MPa Concrete (80 MPa급 고강도 콘크리트를 활용한 2거더교 RC 장지간 바닥판의 최소두께)

  • Bae, Jae-Hyun;Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure durability and light weight of bridges, high-strength concrete is required for long-span deck slabs. Such a technology eventually extends the life of bridges and improves the economic efficiency. The results of this study suggests a formula for calculating the minimum thickness of long-span deck slabs built with high strength concrete. The minimum thickness is proposed based on the limit states indicated in the CEB-FIP Model Code and the Korean Highway Bridge Design Code(limit state design). The design compressive strength of concrete used for the study is 80MPa. Moreover, the required thickness for satisfying the flexural capacity and limiting deflection is estimated considering the limit state load combination. The formula for minimum thickness of deck slabs is proposed considering the ultimate limit state(ULS) and the serviceability limit state(SLS) of bridges, and by comparing the Korean Highway Bridge Design Code and similar previous studies. According to the research finding, the minimum thickness of long-span deck slab is more influenced by deflection limit than flexural capacity.