• Title/Summary/Keyword: life cycle assessment

Search Result 717, Processing Time 0.034 seconds

The Development of the Life Cycle Assessment Systems for the Constraint of the Motor Vehicle Emission (자동차 배출가스 규제를 위한 전생애평가 시스템 구축)

  • 조재립;김경훈;김우식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.365-379
    • /
    • 1997
  • Currently the problem of air pollution caused by the motor vehicle emission is of the most serious problems to be solved. Life Cycle Assessment is a process to evaluate the environmental burdens associated with a product or process by identifying and quantifying energy and materials used and wasters to the environment. This paper establishes a Life Cycle Assessment Systems which satisfies the criteria motor vehicle emission for the automobile producers who are currently producing the automobiles with catalytic convert. This plan also considered the constraint of the effective motor vehicle emission by way of the exhaust gas recirculation, electronic fuel injection, closed loop carburetor. In order to develope the performance of the LCA systems, the recent emissions test data have also been applied. The result of the development LCA systems has proved that the LCA plans presented in this paper satisfies the criteria motor vehicle emission and will be contributed to constrain the motor vehicle emission most effectively.

  • PDF

Establishment of Life Cycle Management(LCM) System for Water Supply and Sewerage Systems (상하수도시설에 대한 전과정관리(LCM)시스템 구축방안 연구)

  • Park, Ji-Hyoung;Hwang, Young-Woo;Kim, Young-Woon;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.303-312
    • /
    • 2012
  • Water supply and sewerage systems are the large-scale urban infrastructure ejecting large amount of environmental load over the life-cycle. Therefore, it is important not only to optimize in the aspect of economical superiority and process efficiency but also to consider earth scale environmental impact. This study aimed to suggest the establishment of life cycle management(LCM) system as an integrated management solution in urban water supply and sewerage systems. As a result, the methodology for LCM system consisting of life cycle assessment(LCA), life cycle cost(LCC), life cycle $CO_{2}(LCCO_{2})$ and life cycle energy(LCE) was developed. Also, several case studies using the latest statistics data of water supply and sewerage systems were carried out to investigate the field applicability of LCM.

Environmental Impact Assessment of Agricultural Systems Using the Life Cycle Assessment (전과정평가 도입을 통한 농업환경영향 평가)

  • Shim, Kyo-Moon;Jeong, Ji-Sun;So, Kyu-Ho;Lim, Song-Tak;Roh, Kee-An;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.237-241
    • /
    • 2010
  • Many policies have been implemented to mitigate the greenhouse gases in atmosphere overall of sectors. With considering the distinct characteristics of the food security, agricultural sector is no exception to this situation. To this regard, total amount of carbon which is emitted through all of the agricultural production process is calculated, and being based on this result, the demand for the introduction of agricultural production system with low carbon has been rising. Case studies on the application of life cycle assessment (LCA) technique to agricultural sector are found in many countries. For example, life cycle inventory (LCI) data bases of crop, farm infrastructure, fertilizer, farm machinery, and etc., have been constructed and provided by Ecoinvent (Swiss centre for life cycle inventories) of Swiss. In Japan, Top-down typed LCA methodology for agriculture is developed based on the inter-industry analysis, and is evaluated according to the productive method of crop. On the other hand, environmental impact assessment of agricultural system using LCA in Korea is just in the beginning stages. So it is required to assess environmental impact on agricultural fertilizer and pesticide, and to develop their flow modeling, and methodology of LCA of agricultural sector. Environmental impact assessment on agricultural materials, machinery, and infrastructure will also be carried out.

A Study on the Characteristics of Environmental Impact with the Seat Material of Electric Motor Unit (EMU) (전동차 의자의 재질에 따른 환경부하 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Bo-Kyong;Chun, Yoon-Young;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.524-531
    • /
    • 2006
  • Environmental problem is one of important global issues. Transportations are main pollutant emission sources. Although railroad is stilt an environmental-friendly transportation, its environmental impact has been increased continuously. Especially, because a large amount of environmental impact is released from vehicles and facilities, it is necessary to assess and to reduce their environmental impact. Life cycle assessment (LCA) is a representative method which can evaluate environment impact through the whole life cycle of a product or a process. In this study, the environmental impact of seat in the electric motor unit (EMU) was analyzed quantitatively with its material using lift cycle assessment (LCA). As a result, the characteristics of environmental impact were investigated differently with the material of seat. Among ten impact categories, the seat with aluminum and FRP showed the highest ozone depletion (OD). On the other hand, in the seat with stainless steel and plastic, fresh water aquatic ecotoxicity (FAET) and marine water aquatic ecotoxicity (MAET) were high relatively. Therefore, the parts of EMU must be selected considering the characteristics of environmental impact in future.

Application of Life Cycle Assessment to Ship (전과정 평가의 선박 적용 연구)

  • Im, Nam-Kyun;Cho, Ho-Jin;Choi, Kyong-Soon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.201-206
    • /
    • 2006
  • As the seriousness of the global environment is gaining increasing our attention recently, studies on application of LCA(Life Cycle Assesment) to ship are being carried dynamically in various industry fields. This study examined general outline about local and international application cf LCA to ship. First of all, international background for the appearance of LCA and its general meaning are introduced. The state-of-the-art for its application to ship will be also explained. Finally, domestic study methodology for application of LCA to ship were suggested.

  • PDF

Approximate Life Cycle Assessment of Product Concepts Using Multiple Regression Analysis and Artificial Neural Networks

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1969-1976
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making for the product concepts, and the best alternative can be selected based on its estimated LCA and benefits. Both the lack of detailed information and time for a full LCA for a various range of design concepts need a new approach for the environmental analysis. This paper explores a new approximate LCA methodology for the product concepts by grouping products according to their environmental characteristics and by mapping product attributes into environmental impact driver (EID) index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then, a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for newly designed products. The training is generalized by using product attributes for an EID in a group as well as another product attributes for the other EIDs in other groups. The neural network model with back propagation algorithm is used, and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines for the design of environmentally conscious products in conceptual design phase.

A Study on Analysis and Assessment of the LCCO2 Emissions for Building Construction by Using the Life Cycle Assessment Methodology (전과정평가 방법론을 이용한 건물의 전과정 탄소 배출량 평가 및 분석에 관한 연구)

  • Cho, Su-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.259-260
    • /
    • 2016
  • Recently, world-wide focusing on the interest for the reduction of greenhouse gas emissions associated with climate change and global warming, South Korea also has set up a national greenhouse gas reduction target and action plans seeking to achieve them. In particular, in the construction area, to encourage green building certification of the building and carbon labeling acquisition of building products, in order to reduce the environmental impact caused by the industrial activities have been in steady efforts. Therefore, this study estimates the life cycle carbon footprint of building construction materials applied to carbon emissions reduction technology and analyzes the results. Through the CO2 emissions analysis in construction phase and maintenance phase of the building, it provides basic resource for future research expansion and establishes a step-by-step whole life cycle carbon emissions reduction plan in new construction and existing buildings.

  • PDF

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.

An Analysis of Potential Environmental Impact Reduction for Combined Sewer Overflow Project using a LCA Methodology (LCA 기법을 활용한 합류식 하수도 월류수 사업의 잠재적 환경영향 저감효과 분석)

  • Jo, Hyun-Jung;Song, Jang-Hwan;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.885-892
    • /
    • 2011
  • In this study, LCA(Life Cycle Assessment) on 'Saemangum CSO Project' was carried out to evaluate environmental impact which occurred during the construction and operation periods and the potential environmental impact reduction was analyzed by comparing production and reduction level of pollution loads. LCA was conducted out according to the procedure of ISO14040 which suggested Goal and Scope Definition, Life Cycle Inventory Analysis, Life Cycle Impact Assessment and Interpretation. In the Goal and Scope Definition, the functional unit was 1 m3 of CSO, the system boundary was construction and operation phases, and the operation period was 20 years. For the data collection and inventory analysis, input energies and materials from civil, architecture, mechanical and electric fields are collected from design sheet but the landscape architecture field is excepted. LCIA(Life Cycle Impact Assessment) was performed following the procedure of Eco-Labelling Type III under 6 categories which were resource depletion, eutrophication, global warming, ozone-layer destruction, and photochemical oxide formation. In the result of LCA, 83.4% of environmental impact occurred in the construction phase and 16.6% in the operation phase. Especially 78% of environmental impact occurred in civil works. The Global warming category showed the highest contribution level in the environmental impact categories. For the analysis on potential environmental impact reduction, the reduction and increased of environmental impact which occurred on construction and operation phases were compared. In the case of considering only the operation phase, the result of the comparison showed that 78% of environmental impact is reduced. On the other hand, when considering both the construction and operation phases, 50% of environmental impact is increase. Therefore, this study showed that eco-friendly material and construction method should be used for reduction of environmental impact during life cycle, and it is strongly necessary to develop technology and skills to reduce environmental impact such as renewable energies.

A Study on the Analysis of LCA tools for Eco-Building (친환경 건축물의 LCA 평가도구 비교분석 연구)

  • Son, Woo-Jin;Kang, Hae-Jin;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-399
    • /
    • 2009
  • Since some decades ago, there has been a concern for resource depletion and environmental pollution associated with building properties. In addressing such impact of the built environment, there is a recognition of the existence of alternative building materials, fuels for energy supply as well as technologies for waste handling and disposal. Nevertheless, for long time, the choice between such alternatives was dictated by factors such as differences in prices and aesthetic values. A new important dimension in discriminating between different options is the environmental dimension. This aspect is important since buildings are one of the spatially big new additions to the natural environment that consume a lot of materials and energy during their long lifetime. Thus, with the environmental dimension kept in mind, a existing cost estimation needs to be changed. A new cost assessment method, Life Cycle Cost, should calculate overall costs with dimensional factors: investment and utility costs as well as maintenance costs over the lifetime of the building. Aiming to give an overview of the present status of Building Life Cycle Assessment(LCA) tools as a basis for further research and development including economic performance, this paper describes and compares 3 different tools for Life Cycle Assessment(LCA) and economic analysis of the green buildings. This paper compared these approaches based on various aspects. These include economic analysis method, evaluation duration, data of results(index). Use of the comparison analysis is to produce a better picture and indicate profits and shortcomings for the tools as a group; thus providing important direction improvement of LCA tool as well as further research and development of this group of tools.

  • PDF