• Title/Summary/Keyword: licorice extract.

Search Result 68, Processing Time 0.031 seconds

Antimicrobial Activities of Licorice Extracts from Various Countries of Origin according to Extraction Conditions (원산지별 감초추출물의 추출 조건별 항균활성)

  • Bae, Jeong Yun;Jang, Ha Na;Ha, Ji Hoon;Park, Jong-Ho;Park, Jino;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.361-366
    • /
    • 2014
  • In this study, Glycyrrhiza uralensis and Glycyrrhiza glabra extracts, with their countries of origin as Korea (Jecheon), Uzbekistan and China, were prepared under various extraction conditions. There were 8 extraction conditions which the licorice were subjected to, and all conditions had different extraction solvents, temperatures and times. Antimicrobial activity on skin flora was evaluated comparatively by a disc diffusion assay, broth macrodilution assay, and kill time curve assay. Based on the antimicrobial activity of their extract confirmed by disc diffusion assay, we established optimal extraction conditions. The Korean licorice extract (85% ethanol, $40^{\circ}C$, 12 h) showed the best activity amongst the samples examined. In particular, its antimicrobial activity against Propionibacterium acnes was the highest. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the licorice extracts revealed that the Korean licorice ($156{\mu}g/ml$ and $1,250{\mu}g/ml$) had better antimicrobial activity than that of the Uzbekistani licorice ($625{\mu}g/ml$ and $2,500{\mu}g/ml$) and the Chinese licorice ($625{\mu}g/ml$ and $5,000{\mu}g/ml$). Taken together, it was shown that Korean licorice extracted in group F (85% ethanol, $40^{\circ}C$, 12 h) had the highest antimicrobial activity amongst the licorices from the other countries of origin. These results also suggest that the optimal extraction conditions are 85% ethanol, $40^{\circ}C$, 12 h, and that licorice has a potential application as a natural preservative in cosmetics products, thereby replacing synthetic preservatives.

Effect of Herbal Extracts Supplementation on Ruminal Methane Production and Fermentation Characteristics In vitro (한약재 추출물 첨가가 in vitro 반추위 발효 시 메탄생성 및 발효성상에 미치는 영향)

  • Lee, Shin-Ja;Lee, Sung-Sill;Moon, Yea-Hwang
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1315-1322
    • /
    • 2011
  • This study was conducted to investigate the effects of several herbal extracts (obtusifolia, cinnamon, chinese pepper, licorice root) on the characteristics of rumen fermentation in vitro. Soybean meal was used as a substrate for fermentation in vitro. Herbal extracts were supplemented to media by 10% of the substrate. The substrates supplemented to Dehority artificial media with herbal extracts were fermented in 30ml serum bottles for 0, 3, 6, 9, 12 and 24 hr at $39^{\circ}C$. Cumulative gas production was significantly (p<0.05) greater in the herbal extract supplements than in the control, in the order of licorice root, chinese pepper, cinnamon and obtusifolia. Methane proportions of the herbal extracts were significantly (p<0.05) higher than that of the control. Licorice root extract supplementation resulted in the lowest methane proportion at 3 hr fermentation. Proportion of hydrogen was significantly (p<0.05) higher in the herbal extract supplements than in the control at 12 hr fermentation. Compared to the control, ammonia concentration in the licorice root was significantly higher at 3 hr fermentation, but lower at 12 hr fermentation (p<0.05). Based on these results, supplementation of the herbal extracts used in this experiment resulted in increased cumulative gas production and stimulating methane production in vitro rumen fermentation.

Antimicrobial Activity, Quantification and Bactericidal Activities of Licorice Active Ingredients (감초 성분의 항균활성, 정량 및 방부력에 관한 연구)

  • Kim, Hye Jin;Jang, Ha Na;Bae, Jeong Yun;Ha, Ji Hoon;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.386-392
    • /
    • 2014
  • The present study was aimed at investigating the antimicrobial activities of licorice's active ingredients. Four samples of licorice ingredients (glycyrrhizin, liquiritin, liquiritigenin, and isoliquiritigenin) were evaluated for their antimicrobial activities against six skin microorganisms. The bioassay applied for determining the antimicrobial effects employed a disc diffusion assay, the minimum inhibitory concentration, and the challenge test. The ingredients showed antibacterial activities. Especially, isoliquiritigenin has significant antimicrobial activities against two Gram-positive (Bacillus subtilis, Propionobacterium acnes) and two Gramnegative (Escherichia coli, Pseudomonas aeruginosa) bacteria. These samples had much higher antimicrobial activities than synthetic preservatives. Our results reveal that liquiritigenin and isoliquiritigenin could be useful compounds for the development of antibacterial agents for the preservation of cosmetics and foods. The two flavonoids, liquiritigenin and isoliquiritigenin, sourced from Korea, China, Uzbekistan, were quantified using HPLC. The results demonstrated that Korean licorice has two flavonoids (liquiritigenin, isoliquiritigenin) in much higher quantities than was observed in the licorice obtained from the two other countries. Thus, isoliquiritigenin and Korean licorice extract represent new candidates for antimicrobial agents.

Genotoxicity Evaluation of the Glycyrrhiza New Variety extract (감초 신품종 추출물의 유전독성 평가)

  • Young-Jae Song;Dong-Gu Kim;Jeonghoon Lee;Wonnam Kim;Hyo-Jin An;Jong-Hyun Lee;Jaeki Chang;Sa-Haeng Kang;Yong-Deok Jeon;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.67-67
    • /
    • 2021
  • The genus Glycyrrhiza (Licorice) has been used as an oriental herbal medicine for a long time in Asian countries. Wongam (WG), which is Glycyrrhiza new variety, have been developed to improve limitation of licorice including low productivity, environmental restriction and insufficient components by Korea Rural Development Administration. To using WG as a herbal medicine, it is important to reveal the adverse effects in health. In this study, we evaluated the genotoxicity test of WG extract through in vitro bacterial reverse mutation (AMES) assay, in vitro chromosomal aberration assay and in vivo mouse bone marrow micronucleus assay. When compared with the control, WG extract with or without the S9 mix showed no genotoxicity in the AMES assay up to 5000 ㎍/plate and in the chromosomal aberration assay up to 1100 ㎍/ml. In micronucleus assay, no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes up to 5000 mg/kg/day for 2 days. The present study demonstrated that WG extract is safe and reliable herbal medicine since no detectable genotoxic effects at least under the conditions of this study.

  • PDF

The effects of some natural products on mouse melanoma cells in vitro

  • Cha, Eun-Jung;Kim, An-Keun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.321.1-321.1
    • /
    • 2002
  • To indentify inhibitors of melanogenesis. we compared the effect of some natural products on mushroom tyrosinase. human melanocytic tyrosinase activity and melanin content. The cytotoxicity of the component were also tested on cultured mouse melanoma cells, Each extract significantly inhibited tyrosinase activity and melanin synthesis in vitro and B 16 melanoma cell lines. In B 16 cell lines, watermelon's inner shell extract inhibited tyrosinase activity as strong as kojic acid at 150${\um}g$/${\mu}\ell$ concentration. And morning glory'seed extract inhibited melanin synthesis more than kojic acid at 150${\um}g$/${\mu}\ell$ concentration. Each extract were strong inhibitors of tyrosinase activity and total melanin synthesis in B 16 mouse melanoma cell lines at less than 100${\um}g$/${\mu}\ell$ concetration. These result show that extract of watermelon's inner shell. lettuce. morning glory's seed and licorice root could be developed as skin whitening component of cosmetics.

  • PDF

Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;de la Cruz, Joseph;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4809-4813
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;Cruz, Joseph Dela;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5117-5121
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells were used as a tumorigenic model. These were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. Expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, were subsequently down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD and various concentrations of LRE showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analyses also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated disease.

Effects of Licorice (Glycyrrhiza uralensis) Extract Added to Kimchi on Growth and Acid Formation by Lactic Acid Bacteria and on Quality of Kimchi (감초추출물 첨가가 김치의 젖산균 생육과 산생성 및 품질에 미치는 영향)

  • Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.795-800
    • /
    • 2005
  • Effects of licorice (Glycyrrhiza uralensis) extract (LicoS) as sugar substitute on kimchi quality was evaluated by investigating acid formation, growth of lactic acid bacteria, sensory properties, and volatile odor components of LicoS-added kimchi. pH of LicoS-added kimchi unripened or ripened for one day did not differ from other samples, but was slightly increased with two or three days ripening. Acidity of unripened kimchi or kimchi ripened for one day significantly increased by addition of LicoS, while that of kimchi ripened for two or three days significantly decreased (p<0.05). Addition of LicoS had no significant effect on lactic acid bacteria count of kimchi compared to sugar. Overall acceptability and taste of 0.05 and 0.1% LicoS-added kimchi ripened for one to three days were higher than other samples, whereas addition of 0.2% LicoS resulted in lowest overall acceptability, taste, and odor. Color of 0.2% LicoS-added kimchi (except 3 day-ripened sample) was inferior to other samples. LicoS addition had no significant effect on volatile odor components of kimchi.

Investigation of Antimicrobial Activity and Stability of Ethanol Extracts of Licorice Root (Glycyrrhiza glabra) (감초의 에탄올 추출물의 항균활성 및 안정성 조사)

  • Kim, Su-Jeong;Shin, Jae-Yoon;Park, Yoon-Moon;Chung, Koo-Min;Lee, Jong-Hwa;Kweon, Dae-Hyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.241-248
    • /
    • 2006
  • Conditions for extraction of antimicrobial materials from licorice root, Glycyrrhiza glabra, were optimized. Among solvents tested, 95% ethanol gave highest antimicrobial activity, and was chosen as optimal extracting solvent. Extraction temperature and time were optimal at room temperature and for 12 hr, respectively. Minimal inhibitory concentration (MIC) of 95% ethanol extracts was determined against 14 microorganisms. Reference microorganisms included 6 Gram(-) bacteria, 4 Gram(+) bacteria, and 4 yeast strains. Ethanol extract exerted very strong growth inhibition on Gram(+) bacteria, while was moderately effective for Gram(-) bacteria and yeasts. Treatment at $180^{\circ}C$ for 30 min or extreme pHs merely destroyed antimicrobial activity of ethanol extract. These findings suggest ethanol extract of G glabra may be useful as natural preservative.

Quality Characteristics of Kimchi with Added Purified Licorice(Glycyrrhiza uralensis) Extract (감초정제물 첨가 김치의 품질특성)

  • Lee, Su-Hyun;Ko, Young-Tae
    • Korean journal of food and cookery science
    • /
    • v.22 no.5 s.95
    • /
    • pp.609-616
    • /
    • 2006
  • The effects of purified licorice (Glycyrrhiza uralensis) extract (PLE) as a sugar substitute on kimchi quality were evaluated by investigating acid formation, growth of lactic acid bacteria, sensory properties, and volatile odor components of PLE-added kimchi. The pH of kimchi with higher amounts of added PLE increased slightly with two or three days ripening. The acidity of unripened kimchi or kimchi ripened for one day significantly increased with addition of PLE, while that of kimchi ripened for two or three days decreased significantly (p<0.05). Addition of PLE had no significant effect on the lactic acid bacteria count of kimchi compared to that of sugar. Overall acceptability and taste of 0.005 or 0.01% PLE-added kimchi ripened for two to three days were higher than those of other samples, whereas addition of more than 0.01% PLE to kimchi unripened or ripened for one day resulted in lower overall acceptability and taste than the reference sample. Diallyl sulfide and methyl trisulfide were newly produced by ripening of kimchi, and the amounts of some volatile odor components in kimchi were also changed during ripening.