• Title/Summary/Keyword: lichenforming fungi

Search Result 2, Processing Time 0.146 seconds

Antifungal Activity of Lichen-Forming Fungi Isolated from Korean and Chinese Lichen Species Against Plant Pathogenic Fungi

  • Oh, Soon-Ok;Jeon, Hae-Sook;Lim, Kwang-Mi;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.381-385
    • /
    • 2006
  • Antifungal activity of Korean and Chinese lichen-forming fungi(LFF) was evaluated against plant pathogenic fungi of Botryosphaeria dothidea, Botrytis cinerea, Diaporthe actinidiae, Pestalotiopsis longiseta, Pythium sp., Rhizoctonia solani, and Sclerotium cepivorum. The LFF were isolated from Cladonia scabriuscula, Melanelia sp., Nephromopsis asahinae, Nephromopsis pallescens, Parmelia laevior, Pertusaria sp., Ramalina conduplicans, Ramalina sinensis, Ramalina sp., Umbilicaria proboscidea and Vulpicida sp. with discharged spore method. The isolates were deposited in the herbarium of Korean Lichen Research Institute(KoLRI) in Sunchon National University. The LFF of Melanelia sp., P. laevior, Pertusaria sp., R. conduplican and Ramalina sp. exhibited strong antifungal activity against all of the pathogenic fungi examined. Among them, LFF of P. laevior showed more than 90% of inhibition in fungal hyphae growth, compared with control. The results imply that LFF can be served as a promising bioresource to develop novel biofungicides. Mass cultivation of the LFF is now under progress in laboratory conditions for chemical identification of antifungal substances.

Effect of Ribitol and Plant Hormones on Aposymbiotical Growth of the Lichenforming Fungi of Ramalina farinacea and Ramalina fastigiata

  • Wang, Yi;Han, Keon-Seon;Wang, Xin Yu;Koh, Young-Jin;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.28-30
    • /
    • 2009
  • This study was aimed at evaluating the growth promoting effect of symbiotic algal polyol (ribitol) and plant hormones on the lichen-forming fungi (LFF), Ramalina farinacea (CH050010 and 40403) and Ramalina fastigiata. The addition of ribitol to basal (malt-yeast extract) medium enhanced the relative growth rates of all three LFF. R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) showed 35.3%, 29.0% and 29.3% higher growth rates, respectively, compared to the control. IBA (indole-3-butyric acid) and TIBA (2,3,5-tridobenzoic acid) also increased growth rates of the LFF by 34 to 64% and 7 to 28%, respectively, compared to the control. The combination of ribitol with IBA or TIBA synergistically increased the growth of all LFF. For example, ribitol and IBA treatments increased growth rates of R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) by 79.4%, 40.3% and 72.8% in, respectively, compared to those grown on the basal medium. The stimulating effect of ribitol and IBA on the LFF growth induced vertical development of the fungal mass in culture. We suggest that lichen-forming fungal growth of Ramalina lichens can be stimulated aposymbiotically by supplementing polyols and plant hormones to the basal medium in the mass production of lichen secondary metabolites under large scale culture conditions.