• Title/Summary/Keyword: level-based

Search Result 29,332, Processing Time 0.052 seconds

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.215-227
    • /
    • 2014
  • In modern computer architectures, caches are widely used to shorten the gap between processor speed and memory access time. However, caches are time-unpredictable, and thus can significantly increase the complexity of worst-case execution time (WCET) analysis, which is crucial for real-time systems. This paper proposes a time-predictable two-level scratchpad-based architecture and an ILP-based static memory objects assignment algorithm to support real-time computing. Moreover, to exploit the load/store latencies that are known statically in this architecture, we study a Scratch-pad Sensitive Scheduling method to further improve the performance. Our experimental results indicate that the performance and energy consumption of the two-level scratchpad-based architecture are superior to the similar cache based architecture for most of the benchmarks we studied.

Design of Integrated Role-Based Access Control Model (통합 직무기반 접근제어 모델 설계)

  • 박진호;안성진
    • Convergence Security Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This paper design a role-based access control model that can resolves the complicated problems of access control requirements. In this paper, we designed an access control model which can control a permission making use up role-based access control, can guard the confidentiality, integrity and availability of information and can control illegal information flow. The designed access control model can protect resources from unauthorized accesses based on the role, multi-level security policies of security level, integrity level and ownership.

  • PDF

City-Scale Modeling for Street Navigation

  • Huang, Fay;Klette, Reinhard
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a semi-automatic image-based approach for 3-dimensional (3D) modeling of buildings along streets. Image-based urban 3D modeling techniques are typically based on the use of aerial and ground-level images. The aerial image of the relevant area is extracted from publically available sources in Google Maps by stitching together different patches of the map. Panoramic images are common for ground-level recording because they have advantages for 3D modeling. A panoramic video recorder is used in the proposed approach for recording sequences of ground-level spherical panoramic images. The proposed approach has two advantages. First, detected camera trajectories are more accurate and stable (compared to methods using multi-view planar images only) due to the use of spherical panoramic images. Second, we extract the texture of a facade of a building from a single panoramic image. Thus, there is no need to deal with color blending problems that typically occur when using overlapping textures.

An experimental study on durability evaluation of the concrete applied nano level inorganic polymer based coatings (나노합성 무기질 폴리머계 표면처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Baek Jong-Myeong;Kim Eun-Kyeum
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1014-1020
    • /
    • 2004
  • In this study, durability of the nano-level inorganic polymer based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, chloride penetration test, accelerating carbonation test, freezing and thawing test, and sulfate ponding test are conducted. As the result of this study, concrete applied nano-level inorganic polymer based coatings has a much higher resistance to the ingress of chloride ion, carbon dioxide, moisture and aggressive acid than plain concrete and epoxy resin based paint by means of crosslinking three-dimensional structure with concrete structure.

  • PDF

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

F-Hessian SIFT-Based Railroad Level-Crossing Vision System (F-Hessian SIFT기반의 철도건널목 영상 감시 시스템)

  • Lim, Hyung-Sup;Yoon, Hak-Sun;Kim, Chel-Huan;Ryu, Deung-Ryeol;Cho, Hwang;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • This paper presents the experimental analysis of a F-Hessian SIFT-Based Railroad Level-Crossing Safety Vision System. Region of surveillance, region of interests, data matching based on extracting feature points has been examined under the laboratory condition by the model rig on a small scale. Real-time system were observed by using SIFT based on F-Hessian feature tracking method and other common algorithm.

Carrier Based LFCPWM for Leakage Current Reduction and NP Current Control in 3-Phase 3-Level Converter (3상 3-레벨 컨버터의 누설전류 저감과 NP 전류 제어를 위한 캐리어 기반 LFCPWM)

  • Lee, Eun-Chul;Choi, Nam-Sup
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.446-454
    • /
    • 2022
  • This study proposes a carrier-based pulse width modulation (PWM) method for leakage current reduction and neutral point (NP) current control in a three-phase three-level converter, which is a carrier-based PWM version of the previously proposed low-frequency common mode voltage PWM. Three groups of space vectors with the same common mode voltage are used. When the averaged NP current needs to be positive or negative, the specific groups are employed to produce low-frequency common mode voltages. The validity of the proposed PWM method is verified through experiments.

A Suggested Air Sampling Strategy for Bioaerosols in Daycare Center Settings (어린이활동공간에서의 바이오에어로졸 포집 전략)

  • Jo, JungHeum;Park, Jun-sik;Kim, Sung-Yeon;Kwon, Myung hee;Kim, Ki Youn;Choi, Jeong-Hak;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.324-333
    • /
    • 2016
  • Objectives: We aimed to compare the sampling performance of different flow-based impactor samplers for collecting fungal spores and bacteria and to explore the association of the level of bioaerosols with activity patterns of occupants in daycare center settings. Methods: For comparison of sampling performance, two different flow-based samplers (greater than 100 L/min or not) were selected; a low flow-based sampler (one-stage Andersen sampler) and two high flow-based samplers (DUO SAS SUPER 360 sampler, BUCK bio-culture sampler). We collected airborne mold and bacteria in 30 daycare centers with various levels of contaminated air. Three repeat samplings per each sampler were performed. Mold and bacteria were grown for 96 hours at $25{\pm}1^{\circ}C$ and 48 hours at $35{\pm}1^{\circ}C$, respectively. The Andersen and SAS samplers were used for investigating the association between the level of bioaerosols and the activity patterns of occupants in daycares. Particular matters 10($PM_{10}$), temperature, and relative humidity were monitored as well. Samplings were carried out with one-hour interval from 9 to 5 O'clock. For statistical comparisons, Kruskal-Wallis test, Wilcoxon's signed rank test, and multiple regression analysis were carried out. Results: The airborne level of molds by the low flow-based sampler were significantly higher than that of high flow-based samplers (indoor, P=0.037; outdoor, P=0.041). However, no statistical difference was observed in the airborne level of bacteria by each sampler. Also the level of bioaerosols varied by the time, particularly with different activity patterns in daycare centers. The higher level of mold and bacteria were observed in play time in indoor. Similarly, the concentrations of $PM_{10}$ were significantly associated with the level of bioaerosols (P<0.05). Conclusions: Our findings indicate that the flow rate of sampler, rather than total air volume, could be able to affect the results of sampling. Also, the level of airborne mold and bacteria vary behavior patterns of occupants in indoor of daycare settings. Therefore, different samplers with other flow rate may be selected for mold or bacteria sampling, and activity patterns should be considered for bioaerosol sampling as well.

The control method of 3-level PWM inverter in special application using neural networks (신경회로망을 사용한 특정용도의 3-level PWM 인버터 제어방법)

  • 이현원;김남해;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1261-1264
    • /
    • 1996
  • This paper presents the design of a neural network based PWM technique for a three level inverter of electric trains. A three-level inverter has several advantages compared with a two-level inverter in this application. In viewpoint of correcting unbalance of DC-link voltage, a novel method is developed and verified in computer simulation.

  • PDF

Current Decoupling Control for the Three-level PWM Rectifier with a Low Switching Frequency

  • Yuan, Qing-Qing;Xia, Kun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.280-287
    • /
    • 2015
  • Three-level PWM rectifiers applied in medium voltage applications usually operate at low switching frequency to keep the dynamic losses under permitted level. However, low switching frequency brings a heavy cross-coupling between the current components $i_d$ and $i_q$ with a poor dynamic system performance and a harmonic distortion in the grid-connecting current. To overcome these problems, a mathematical model based on complex variables of the three-level voltage source PWM rectifier is firstly established, and the reasons of above issues resulted from low switching frequency have been analyzed using modern control theory. Then, a novel control strategy suitable for the current decoupling control based on the complex variables for $i_d$ and $i_q$ is designed here. The comparisons between this kind of control strategy and the normal PI method have been carried out. MATLAB and experimental results are given in detail.