• Title/Summary/Keyword: level of detector

Search Result 508, Processing Time 0.03 seconds

Pixel-level Current Mirroring Injection with 2-step Bias-current Suppression for 2-D Microbolometer FPAs (이차원 마이크로볼로미터 FPA를 위한 이 단계 바이어스 전류 억제 방식을 갖는 픽셀 단위의 전류 미러 신호취득 회로)

  • Hwang, Chi Ho;Woo, Doo Hyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.36-43
    • /
    • 2015
  • A pixel-level readout circuit is studied for 2-dimensional microbolometer focal plane arrays (FPAs). A current mirroring injection (CMI) input circuit with 2-step current-mode bias suppression is proposed for a pixel-level architecture with high responsivity and long integration time. The proposed circuit has been designed using a $0.35-{\mu}m$ 2-poly 4-metal CMOS process for a $320{\times}240$ microbolometer array with a pixel size of $50{\mu}m{\times}50{\mu}m$. The proposed 2-step bias-current suppression has sufficiently low calibration error with wide calibration range, and the calibration range and error can be easily optimized by controlling some design parameters. Due to high responsivity and a long integration time of more than 1 ms, the noise equivalent temperature difference (NETD) of the proposed circuit can be improved to 26 mK, which is much better than that of the conventional circuits, 67 mK.

A Q-learning based channel access scheme for cognitive radios (무선 인지 시스템을 위한 Q-learning 기반 채널접근기법)

  • Lee, Young-Doo;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.77-88
    • /
    • 2011
  • In distributed cognitive radio networks, cognitive radio devices which perform the channel sensing individually, are seriously affected by radio channel environments such as noise, shadowing and fading such that they can not property satisfy the maximum allowable interference level to the primary user. In the paper, we propose a Q-learning based channel access scheme for cognitive radios so as to satisfy the maximum allowable interference level to the primary user as well as to improve the throughput of cognitive radio by opportunistically accessing on the idle channels. In the proposed scheme, the pattern of channel usage of the primary user will be learned through Q-learning during the pre-play learning step, and then the learned channel usage pattern will be utilized for improving the sensing performance during the Q-learning normal operation step. Through the simulation, it is shown that the proposed scheme can provide bettor performance than the conventional energy detector in terms of the interference level to primary user and the throughput of cognitive radio under both AWGN and Rayleigh fading channels.

Improvement of GOCI-II Ground System for Monitoring of Level-1 Data Quality (천리안 해양위성 2호 Level-1 영상의 품질관리를 위한 지상국 시스템 개선)

  • Sun-Ju Lee;Kum-Hui Oh;Gm-Sil Kang;Woo-Chang Choi;Jong-Kuk Choi;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1529-1539
    • /
    • 2023
  • The data from Geostationary Ocean Color Imager-II (GOCI-II), which observes the color of the sea to monitor marine environments, undergoes various correction processes in the ground station system, producing data from Raw to Level-2 (L2). Quality issues arising at each processing stage accumulate step by step, leading to an amplification of errors in the satellite data. To address this, improvements were made to the GOCI-II ground station system to measure potential optical quality and geolocation accuracy errors in the Level-1A/B (L1A/B) data. A newly established Radiometric and Geometric Performance Assessment Module (RGPAM) now measures five optical quality factors and four geolocation accuracy factors in near real-time. Testing with GOCI-II data has shown that RGPAM's functions, including data processing, display and download of measurement results, work well. The performance metrics obtained through RGPAM are expected to serve as foundational data for real-time radiometric correction model enhancements, assessment of L1 data quality consistency, and the development of reprocessing strategies to address identified issues related to the GOCI-II detector's sensitivity degradation.

Quality Control of Radiation Counting Systems and Measurement of Minimum Delectable Activity (방사선 계측기의 품질관리 및 최소검출방사능 측정)

  • 송병철;한성심;김영복;지광용;손세철
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.419-424
    • /
    • 2004
  • Various radiation counters have been using to determine radioactivity of radwastes for disposal. A radiation counting system was set up using a radiation detector chosen in this study and its stability was investigated through the periodic determination of background and counting efficiencies in accordance with a quality control program to increase the confidence level. The average background level for the $\gamma$-spectrometer was 1.59 cps and the average counting level for the standard sample was 45248 Ops within $2{\sigma}$ confidence levels. The average alpha background level for the low background ${\alpha}{\beta}$ counting system was 0.31 cpm and the efficiency for alpha counting was 34.38%. The average beta background level for the ${\alpha}{\beta}$ counting system was 1,30 cpm and the efficiency for beta counting was 46.5%, The background level in the region of 3H and 14C for the liquid scintillation counting system was 2.52 and 3.31 cpm and the efficiency for alpha counting was 58.5 and 95.6%, respectively. The minimum detectable activity for the$\gamma$-spectrometer was found to be 3.2 Bq/$m\ell$ and 3.8 Bq/$m\ell$ for the liquid scintillation counter, and 20.5 and 23.0 Bq/$m\ell$, respectively for the $\alpha$ and $\beta$ counting system.

  • PDF

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.

A Design of Phase-Frequency Detector for Low Jitter and Fast Locking Time of PLL (PLL 고정시간의 저감대책 수립과 저 지터 구현을 위한 위상-주파수 감지기의 설계)

  • Jung, S.M.;Lee, J.S.;Kim, J.R.;Woo, Y.S.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.742-744
    • /
    • 1999
  • In this paper, a new precharge type PFD for fast locking time of PLL is suggested. It is realized by inserting NMOS transistor and inverter into the precharge part of PFD for isolating the reset of the Up signal from the feedback signal. The new precharge type PFD generates the Up signal while the feedback signal is fixed at a high level. Therefore the new PFD output is increased than the conventional precharge type PFD output. As a result of the increased PFD output, fast locking of PLLs is achieved. Additionally, with control the falling time of the inverter, the dead-zone is reduced and the jitter characteristics are improved. The whole characteristics of PFD and PLL are simulated by using HSPICE. Simulation results show that the dead-zone is 20ps and the locking time of PLL using the new PFD is 38ns at the 350MHz frequency of referecne signal. This value is quite small compared with conventional PFD.

  • PDF

THE CURRENT STATUS OF THE AKARI MID-INFRARED ALL-SKY DIFFUSE MAPS

  • Amatsutsu, Tomoya;Ishihara, Daisuke;Kondo, Toru;Kaneda, Hidehiro;Oyabu, Shinki;Yamagishi, Mitsuyoshi;Nakamichi, Keichiro;Sano, Hidetoshi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.25-27
    • /
    • 2017
  • We are creating all-sky diffuse maps from the AKARI mid-infrared survey data with the two photometric bands centered at wavelengths of 9 and $18{\mu}m$. The AKARI mid-infrared diffuse maps achieve higher spatial resolution and higher sensitivity than the IRAS maps. In particular, the $9{\mu}m$ data are unique resources as an all-sky tracer of the emission of polycyclic aromatic hydrocarbons (PAHs). However, the original data suffer many artifacts. Thus, we have been developing correction methods. Among them, we have recently improved correction methods for the non-linearity and the reset anomaly of the detector response. These corrections successfully reduce the artifact level down to $0.1MJy\;sr^{-1}$ on average, which is essential for discussion on faint extended emission (e.g., the Galactic PAH emission). We have also made progress in the subtraction of the scattered light caused in the camera optics. We plan to release the improved diffuse maps to the public within a year.

Determination of tylosin in edible meats by high-performance liquid chromatography (HPLC를 이용한 식육내 타이로신의 잔류분석법)

  • Kim, Gon-sup;Shin, Sun-hye;Kim, Jong-su;Ra, Do-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • A simple and rapid analytical method for the determination of tylosin in chicken, pork and muscle was established by High-Performance Liquid Chromatography(HPLC). Chicken, pork and beef muscle(5 g) were fortified by adding the $0.2{\mu}g/ml$ of standard tylosin and the drug was extracted from meats with 70% acetonitrile(ACN) and followed by liquid-liquid partition for clean-up procedure. Then $20{\mu}l$ portion of ACN elution was directly analyzed by HPLC with spectra 100 variable wavelength detector, and unfortified blank control were treated similarly. The average recovery rate of tylosin added to chicken, pork and beef muscle were $83{\pm}2.3$, $96{\pm}3.3$ and $92{\pm}1.6$(%) at the level 0.2 ppm, respectively. No tylosin residues in marketing meats. These results suggested that HPLC methodology could be acceptable for the extraction, determination and screening of tylosin residues in edible meats.

  • PDF

Under the fading channel environment, performance evaluation of AF CR loop Due to the quantization effect (페이딩 채널 환경하에서의 양자화 특성에 의한 AF CR loop의 성능평가)

  • 송재철;이경하;김선형;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.737-746
    • /
    • 1996
  • In this paper, we present simulation result of quantization effects about a new Angular From Carrier Recovery Loop(AF CR loop) for PSK modulation technique. AF CR loop includes detected angle symbol and Multi Level hardimiter. In general, detected angle is used in dtermining symbol. Because detected angle is used to make an error signal of phase detector output, hardware implementation of AF CR loop is simpler than that of other loops. Before hardware implementation of AF CR loop, the result due to quantization effect should be investigated. In order to confirm quntization effect of AF CR loop, we evaluate performance of this loop by Monte-Carlosimulation method. Under both in the AWGN and Jake's fading noise channel environments, we confirmed the characteristics of AF CR loop in terms of RMS jitter due to quntization effect. Differential APSK modulation schemeis used in this paper. Especially, Jake's fading channel is used as a channel model and also AGC(Automatic Gain Control) is used in the overall process of performance evaluation. We obtained the resonable result of quantization effect about AF CR loop. With the result of performanceevaluation based on quantization effects, we can expect to operate AF CRloop under the fading channel environments reasonably well.

  • PDF

Short Wave Infrared Imaging for Auroral Physics and Aeronomy Studies

  • Trond S. Trondsen;John Meriwether;Craig Unick;Andrew Gerrard;Matthew Cooper;Devin Wyatt
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.121-138
    • /
    • 2024
  • Advances in solar-terrestrial physics are generally linked to the development of innovative new sensor technologies, affording us ever better sensitivity, higher resolution, and broader spectral response. Recent advances in low-noise InGaAs sensor technology have enabled the realization of low-light-level scientific imaging within the short-wave infrared (SWIR) region of the electromagnetic spectrum. This paper describes a new and highly sensitive ultra-wide angle imager that offers an expansion of auroral and airglow imaging capabilities into the SWIR spectral range of 900-1,700 nm. The imager has already proven successful in large-area remote sensing of mesospheric temperatures and in providing intensity maps showing the propagation and dissipation of atmospheric gravity waves and ripples. The addition of an automated filter wheel expands the range of applications of an already versatile SWIR detector. Several potential applications are proposed herein, with an emphasis on auroral science. The combined data from this type of instrument and other existing instrumentation holds a strong potential to further enhance our understanding of the geospace environment.