• Title/Summary/Keyword: leukemia-maintaining cells

Search Result 4, Processing Time 0.009 seconds

Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia (만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정)

  • Lee, Hong-Rae;Kim, Mi-Ju;Ha, Gahee;Kim, So-Jung;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • The present study investigated whether leukemia-maintaining cells reside in a differentiation-resistant fraction using a megakaryocytic differentiation model of K562 cells. Treatment with phorbol-12-myristate-13-acetate (PMA) significantly inhibited the colony-forming efficiency of the K562 cells. At a PMA concentration of 1 nM or higher, colony was not formed, but approximately 40% of K562 cells still survived in soft agar. Approximately 70% of colony-forming cells that were isolated following the removal of PMA after exposure to the agent were differentiated after treatment with 10 nM PMA for 3 days. The differentiation rate of the colony-forming cells was gradually increased and reached about 90% 6 weeks after colony isolation, which was comparable to the level of a PMA-treated K562 control. Meanwhile, imatinib-resistant variants from the K562 cells, including K562/R1, K562/R2, and K562/R3 cells, did not show any colony-forming activity, and most imatinib-resistant variants were CD44 positive. After 4 months of culture in drug-free medium, the surface level of CD44 was decreased in comparison with primary imatinib-resistant variants, and a few colonies were formed from K562/R3 cells. In these cells, Bcr-Abl, which was lost in the imatinib-resistant variants, was re-expressed, and the original phenotypes of the K562 cells were partially recovered. These results suggest that leukemia-maintaining cells might reside in a differentiation-resistant population. Differentiation therapy to eliminate leukemia-maintaining cells could be a successful treatment for leukemia if the leukemia-maintaining cells were exposed to a differentiation inducer for a long time and at a high dose.

Expression and Efficient One-Step Chromatographic Purification of a Soluble Antagonist for Human Leukemia Inhibitory Factor Receptor in Escherichia coli

  • Kim, Eun-Yeong;Choi, Hee-Jung;Chung, Tae-Wook;Jang, Se Bok;Kim, Kibong;Ha, Ki-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1307-1314
    • /
    • 2015
  • Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family, having pleiotropic actions such as maintaining stem cell pluripotency and enabling blastocyst implantation. Because the action of LIF is mediated by a ligand-receptor interaction with the LIF receptor (LIF-R), an antagonist for LIF-R has been developed to inhibit LIF-induced signaling. In this study, we present a novel method for the production and purification of an antagonist to human LIF-R (hLA). His-tagged hLA was expressed in E. coli, and simple purification methods without any endopeptidase cleavage were designed. In addition, we determined the optimal temperature conditions for enhancing the production of soluble hLA. Finally, the bioactivity of His-tagged hLA was examined using STAT3 phosphorylation and receptivity of human endometrial ECC-1 cells. Our strategy provides a rapid and efficient method to produce biologically active recombinant hLA.

Emerging role of anti-proliferative protein BTG1 and BTG2

  • Kim, Sang Hyeon;Jung, In Ryeong;Hwang, Soo Seok
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.380-388
    • /
    • 2022
  • The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naive and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics.

Enhanced Large-Scale Production of Hahella chejuensis-Derived Prodigiosin and Evaluation of Its Bioactivity

  • Jeong, Yu-jin;Kim, Hyun Ju;Kim, Suran;Park, Seo-Young;Kim, HyeRan;Jeong, Sekyoo;Lee, Sang Jun;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1624-1631
    • /
    • 2021
  • Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.