• Title/Summary/Keyword: leucine-rich repeat receptor-like-protein kinase (LRR-RLK)

Search Result 1, Processing Time 0.015 seconds

Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways (단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황)

  • Lee, Yew;Kim, Soo-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.428-436
    • /
    • 2012
  • Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive 1 (BRI1), resulting in the dephosphorylation of transcription factors such as BZR1/BES2 and BZR2/BES1 followed by BR-induced gene expression. Brassinosteroid signal transduction research has progressed rapidly by identifying the phosphorylation/dephosphorylation site(s) of the BR-regulated kinase and phosphatase substrates with a simultaneous pursuit of mutant phenotypes. Autophosphorylation, transphosphorylation, and serine/threonine and tyrosine phosphorylation of the receptor protein kinases BRI1 and BRI1-associated kinase (BAK1) have increased the understanding of the regulatory role of those kinases during physiological and developmental processes in plants. The phosphorylation event initiated by BR is also found in the regulation of receptor-mediated endocytosis and the subsequent degradation of the receptor. However, the basic molecular links of the BR signal transduction pathway are not well understood regarding this phosphorylation/dephosphorylation event. This review summarizes the current state of BR signal transduction research to uncover the phosphorylation/dephosphorylation networks and suggests directions for future research on steroid signal transduction to gain a more comprehensive understanding of the process.