• Title/Summary/Keyword: leucine dehydrogenase

Search Result 39, Processing Time 0.027 seconds

THE CYTOTOXIC EFFECTS OF GLASS-IONOMER CEMENT LINERS ON FIBROBLASTS IN HUMAN PULP (Glass-ionomer Cement 이장재의 세포독성에 관한 연구)

  • Na, Young-Min;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.261-276
    • /
    • 1993
  • The purpose of this study was to evaluate for the cytotoxicity of glass-ionomer cement liners(GC liningcement, Ketac-bond, Vitrebond and Fuji lining LC) on the fibroblasts cultured from human pulp. The fibroblasts were cultured in DMEM-10% FBS medium. The measurement of pH, succinate dehydrogenase (SDH) activity test and $^{51}Chromium$ release test were performed. Viable cell count and $^{14}C$-leucine incorporation rate were evaluated following culture time of 2, 4 and 6 days. The results of this study were as follows : 1. The pH in all cements was to be neutralized as time elapsed, and Fuji lining LC was the lowest pH value among them. 2. SDH activity was more inhibited in GC lining cement and Vitrebond than Ketac-bond and Fuji lining LC with the setting process, and GC lining cement and Ketac-bond were reduced after 5 minute's setting and then elevated as time elapsed. 3. In SDH activity test following exposure time, the activity in Vitrebond, GC lining cement and Fuji lining LC was inhibited with increased exposure time, but it was fairly constant in Ketac-bond. 4. Overall the liquid component was more inhibited than the powder component of glass-ionomer cement in SDH activity test. 5. In $^{51}Cr$-release test, Fuji lining LC was the most released of all the cements tested and followed by : Vitrebond, Ketac-bond, GC lining cement. 6. In viable cell count, the number of cells increased as the culture day proceeded in Ketac-bond, but they decreased in GC lining cement. Fuji lining LC was only observed after 2 days culture and there was not observed the whole culture days in Vitrebond. 7. In $^{14}C$-leucine incorporation rate test, protein synthesis was decreased with the number of culture days in GC lining cement, Vitrebond and Fuji lining LC, but it was followed that of control in Ketacbond.

  • PDF

Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice

  • Kottapalli, Kameswara Rao;Satoh, Kouji;Rakwal, Randeep;Shibato, Junko;Doi, Koji;Nagata, Toshifumi;Kikuchi, Shoshi
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.394-408
    • /
    • 2007
  • Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses.

Chronic intermittent form of isovaleric aciduria in a 2-year-old boy

  • Cho, Jin Min;Lee, Beom Hee;Kim, Gu-Hwan;Kim, Yoo-Mi;Choi, Jin-Ho;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.8
    • /
    • pp.351-354
    • /
    • 2013
  • Isovaleric aciduria (IVA) is caused by an autosomal recessive deficiency of isovaleryl-CoA dehydrogenase (IVD). IVA presents either in the neonatal period as an acute episode of fulminant metabolic acidosis, which may lead to coma or death, or later as a "chronic intermittent form" that is associated with developmental delays, with or without recurrent acidotic episodes during periods of stress, such as infections. Here, we report the case of a 2-year old boy with IVA who presented with the chronic intermittent form. He was admitted to Asan Medical Center Children's Hospital with recurrent vomiting. Metabolic acidosis, hyperammonemia, elevated serum lactate and isovalerylcarnitine levels, and markedly increased urine isovalerylglycine concentration were noted. Sequence analysis of the IVD gene in the patient revealed the novel compound mutations-a missense mutation, c.986T>C (p.Met329Thr) and a frameshift mutation, c.1083del (p.Ile361fs$^*11$). Following stabilization during the acute phase, the patient has remained in a stable condition on a low-leucine diet.

Expression of a Functional zipFv Antibody Fragment and Its Fusions with Alkaline Phosphatase in the Cytoplasm of an Escherichia coli

  • Hur, Byung-Ung;Choi, Hyo-Jung;Yoon, Jae-Bong;Cha, Sang-Hoon
    • IMMUNE NETWORK
    • /
    • v.10 no.2
    • /
    • pp.35-45
    • /
    • 2010
  • Background: Expression of recombinant antibodies and their derivatives fused with other functional molecules such as alkaline phosphatase in Escherichia coli is important in the development of molecular diagnostic reagents for biomedical research. Methods: We investigated the possibility of applying a well-known Fos-Jun zipper to dimerize $V_H$ and $V_L$ fragments originated from the Fab clone (SP 112) that recognizes pyruvate dehydrogenase complex-E2 (PDC-E2), and demonstrated that the functional zipFv-112 and its alkaline phosphatase fusion molecules (zipFv-AP) can be produced in the cytoplasm of Origami(DE3) trxB gor mutant E. coli strain. Results: The zipFv-AP fusion molecules exhibited higher antigen-binding signals than the zipFv up to a 10-fold under the same experimental conditions. However, conformation of the zipFv-AP seemed to be influenced by the location of an AP domain at the C-terminus of $V_H$ or $V_L$ domain [zipFv-112(H-AP) or zipFv-112(L-AP)], and inclusion of an AraC DNA binding domain at the C-terminus of VH of the zipFv-112(L-AP), termed zipFv-112(H-AD/L-AP), was also beneficial. Cytoplasmic co-expression of disulfide-binding isomerase C (DsbC) helped proper folding of the zipFv-112(H-AD/L-AP) but not significantly. Conclusion: We believe that our zipFv constructs may serve as an excellent antibody format bi-functional antibody fragments that can be produced stably in the cytoplasm of E. coli.

Identification of Two Novel BCKDHB Mutations in Korean Siblings with Maple Syrup Urine Disease Showing Mild Clinical Presentation

  • Ko, Jung Min;Shin, Choong Ho;Yang, Sei Won;Cheong, Hae Il;Song, Junghan
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Maple syrup urine disease (MSUD) is a disorder that involves the metabolism of branched chain amino acids, arising from a defect in branched-chain ${\alpha}$-keto acid dehydrogenase complex. Mutations have been identified in the BCKDHA, BCKDHB, or DBT genes, which encode different subunits of the BCKDH complex. Although encephalopathy and progressive neurodegeneration are its major manifestations, the severity of the disease may range from the severe classic type to milder intermediate variants. We report two Korean siblings with the milder intermediate MSUD who were diagnosed with MSUD by a combination of newborn screening tests using tandem mass spectrometry and family genetic screening for MSUD. At diagnosis, the patients' plasma levels were elevated for leucine, isoleucine, valine, and alloisoleucine, and branched-chain ${\alpha}$-keto acids and branched-chain ${\alpha}$-hydroxy acids were detected in their urine. BCKDHA, BCKDHB, and DBT analysis was performed, and two novel mutations were identified in BCKDHB. Our patients were thought to have the milder intermediate variant of MSUD, rather than the classic form. Although MSUD is a typical metabolic disease with poor prognosis, better outcomes can be expected if early diagnosis and prompt management are provided, particularly for milder forms of the disease.

Effect of Ethanol on $Na^+-P_i$ Uptake in Opossum Kidney Cells: Role of Membrane Fluidization and Reactive Oxygen Species

  • Park, In-Ho;Hwang, Moon-Young;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.529-538
    • /
    • 1999
  • This study was undertaken to examine the effect of ethanol on $Na^+ -dependent$ phosphate $(Na^+-P_i)$ uptake in opossum kidney (OK) cells, an established renal proximal tubular cell line. Ethanol inhibited ^Na^+-dependent$ component of phosphate uptake in a dose-dependent manner with $I_{50}$ of 8.4%, but it did not affect $Na^+-independent$ component. Similarly, ethanol inhibited $Na^+-dependent$ uptakes of glucose and amino acids (AIB, glycine, alanine, and leucine). Microsomal $Na^+-K^+-ATPase$ activity was not significantly altered when cells were treated with 8% ethanol. Kinetic analysis showed that ethanol increased $K_m$ without a change in $V_{max}$ of $Na^+-P_i$ uptake. Inhibitory effect of n-alcohols on $Na^+-P_i$ uptake was dependent on the length of the hydrocarbon chain, and it resulted from the binding of one molecule of alcohol, as indicated by the Hill coefficient (n) of 0.8-1.04. Catalase significantly prevented the inhibition, but superoxide dismutase and hydroxyl radical scavengers did not alter the ethanol effect. A potent antioxidant DPPD and iron chelators did not prevent the inhibition. Pyrazole, an inhibitor of alcohol dehydrogenase, did not attenuate ethanol-induced inhibition of $Na^+-P_i$ uptake, but it prevented ethanol-induced cell death. These results suggest that ethanol may inhibit $Na^+-P_i$ uptake through a direct action on the carrier protein, although the transport system is affected by alterations in the lipid environment of the membrane.

  • PDF

The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study

  • Suwannasing, Rattikan;Duangjinda, Monchai;Boonkum, Wuttigrai;Taharnklaew, Rutjawate;Tuangsithtanon, Komson
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1852-1862
    • /
    • 2018
  • Objective: The purpose of this study was to investigate a single step genome-wide association study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. Methods: The traits included the number of pigs weaned per sow per year (PWSY), the number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), while multiple traits single-step genomic BLUP method was used to calculate variances of 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty-two SNPs associated with reproductive traits in Landrace and Large White, respectively. Three known genes were identified to be candidate genes in Landrace pigs including retinol binding protein 7, and ubiquitination factor E4B genes for PWL, BAL, W2CL, and PWSY and one gene, solute carrier organic anion transporter family member 6A1, for LSY and NPD. Meanwhile, five genes were identified to be candidate genes in Large White, two of which, aldehyde dehydrogenase 1 family member A3 and leucine rich repeat kinase 1, associated with all of six reproduction traits and three genes; retrotransposon Gag like 4, transient receptor potential cation channel subfamily C member 5, and LHFPL tetraspan subfamily member 1 for five traits except W2CL. Conclusion: The genomic regions identified in this study provided a start-up point for marker assisted selection and estimating genomic breeding values for improving reproductive traits in commercial pig populations.

Observations on the Genetic Structure of Pinus densiflora Sieb. et Zucc(I) : The Young-il Population (소나무의 유전적(遺傳的) 구조(構造)에 관한 연구(硏究) (I) : 영일(迎日) 집단(集團)의 유전적(遺傳的) 구조(構造))

  • Chung, Min Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.246-254
    • /
    • 1991
  • Genetic structure of a Pinus densiflora population consisting of two subpopulations on the north-and south-facing slopes of a mountain was studied by allozyme analysis. Allozyme variants in aspartate aminotransferase(AAT), glutmate dehydrogenase(GDH) and leucine aminopeptidase(LAP) systems are encoded, at least, by eight loci ; five for AAT, one for GDH and two for LAP. Average number of alleles examined over six loci was 3.33. Average heterozygosity and genetic diversity computed over six loci were, respectively, 0.19 and 2.76 for parental population, 0.17 and 2.22 for progeny population. Differences in allelic frequencies between maternal sources at many of the investigated loci were found and between subpopulations on the north- and south-facing slopes. Allele frequencies of maternal origin at some of the loci were significantly different from each other between the two subpopulations. Thus it appears that the matings within and between subpopulations were not random and the mountain ridge that divides the north-and south-facing slopes isolate the two suhpopulations reproductively to a great extent. Some of the genotypes both in parental and progeny(embryo) groups deviate significantly from the Hardy-Weinberg equilibrium state. It appears from the result that the pine population is originated from a few limited ancestral trees and thus consanguineous matings are prevalent in this pine population.

  • PDF

A Newborn Case of Maple Syrup Urine Disease Type 1B Presenting with Lethargy and Central Apnea (기면과 중추성 무호흡으로 나타난 단풍시럽뇨병 Type 1B 신생아 1례)

  • Kang, Youngtae;Choi, Sung Hwan;Ko, Jung Min;Shin, Seung Han;Kim, Ee-Kyung;Kim, Han-Suk
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2018
  • Maple syrup urine disease (MSUD, OMIM#248600) is a rare and autosomal recessively-inherited metabolic disorder that is caused by mutations in the branched-chain ${\alpha}$-ketoacid dehydrogenase (BCKDH) genes. It prevents the normal breakdown of branched-chain amino acids (BCAAs), such as leucine, isoleucine, and valine, and leads to poor feeding, lethargy, abnormal movements, seizure, and death if untreated. Here, we report the case of a Korean newborn of biochemically- and genetically-confirmed MSUD manifesting lethargy and central apnea, the acute state of which was successfully treated. The molecular genetic investigation revealed two novel heterozygous mutations (p.Ala32Phefs*48 and p.Val 130Phe) in BCKDHB, and both parents were confirmed as carriers. We emphasize the importance of early diagnosis and prompt introduction of specific treatment for MSUD in life saving and prognosis.

  • PDF