• 제목/요약/키워드: leucine biosynthesis

검색결과 33건 처리시간 0.021초

Expression in Escherichia coli, Purification, and Characterization of the Tobacco Sulfonylurea Herbicide-Resistant Recombinant Acetolactate Synthase and Its Interaction with the Triazolopyrimidine Herbicides

  • Kil, Mee-Wha;Chang, Soo-Ik
    • BMB Reports
    • /
    • 제31권3호
    • /
    • pp.287-295
    • /
    • 1998
  • Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of L-Ieucine, L-isoleucine, and L-valine. The sulfonylurea-resistant ALS gene from Nicotiana tabacum was cloned into the bacterial expression vector pGEX-2T. The resulting recombinant plasmid pGEX-ALS3 was used to transform Escherichia coli strain XL1-Blue, and the mutant tobacco ALS (mALS) was expressed in the bacteria as a protein fused with glutathione S-transferase (GST). The fusion product GST-mALS was purified in a single step on a glutathione-Sepharose column. ALS activities of 0.9-2.5 ${\mu}mol/min/mg$ protein were observed in the GST-mALS, and the Km values for pyruvate, FAD, and TPP were 10.8-24.1, $(1.9-8.9){\times}10^{-3}$, and 0.14-0.38 mM, respectively. The purified GST-mALS was resistant to both the sulfonylurea and the triazolopyrimidine herbicides, and lost its sensitivity to end products, L-valine and L-leucine. For comparision, the tobacco wild-type recombinant ALS fused with GST, GST-wALS, was also characterized with respect to its pyruvate and cofactor bindings. These results suggest that the purified mutant recombinant tobacco ALS was functionally active, that the mutations resulting in herbicide resistance has affected pyruvate and cofactor bindings," and that the two classes of herbicides interact at a common site on the plant ALS.

  • PDF

Characterization of Two Forms of Acetolactate Synthase from Barley

  • Yoon, Jong-Mo;Yoon, Moon-Young;Kim, Young-Tae;Choi, Jung-Do
    • BMB Reports
    • /
    • 제36권5호
    • /
    • pp.456-461
    • /
    • 2003
  • Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target site for several classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. Two forms of ALS (designated ALS I and ALS II) were separated from barley shoots by heparin affinity column chromatography. The molecular masses of native ALS I and ALS II were determined to be 248 kDa and 238 kDa by nondenaturing gel electrophoresis and activity staining. Similar molecular masses of two forms of ALS were confirmed by a Western blot analysis. SDS-PAGE and Western blot analysis showed that the molecular masses of the ALS I and ALS II subunits were identical - 65 kDa. The two ALS forms exhibited different properties with respect to the values of $K_m$, pI and optimum pH, and sensitivity to inhibition by herbicides sulfonylurea and imidazolinone as well as to the feedback regulation by the end-product amino acids Val, Leu, and Ile. These results, therefore, suggest that the two ALS forms are not different polymeric forms of the same enzyme, but isozymes.

Expression of Acetohydroxyacid Synthase from Bacillus anthracis and Its Potent Inhibitors

  • Choi, Kyoung-Jae;Pham, Chien Ngoc;Jung, Hoe-Il;Han, Sung-Hwan;Choi, Jung-Do;Kim, Jin-Heung;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1109-1113
    • /
    • 2007
  • Acetohydroxyacid synthase (AHAS, EC 2. 2. 1. 6) is the enzyme that catalyses the first step in the common pathway of the biosynthesis of the branched chain amino acids, valine, leucine and isoleucine. For the first time, the AHAS gene from Bacillus anthracis was cloned into the expression vector pET28a(+), and was expressed in the E. coli strain BL21(DE3). The purified enzyme was checked on 12% SDS-PAGE to be a single band with molecular weight of 65 kDa. The optimum pH and temperature for B. anthracis AHAS was at pH 7.5 and 37 oC, respectively. Kinetic parameters of B. anthracis were as follows: Km for pyruvate, K0.5 for ThDP and Mg2+ was 4.8, 0.28 and 1.16 mM respectively. AHAS from B. anthracis showed strong resistance to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). These results indicated that these herbicides could be used in the search for new anti-bacterial drugs.

Overexpression of Nicotiana tabacum Acetolactate Synthase as an Inducible Fusion Protein in Escherichia coli: Production of a Polyclonal Antibody to Nicotiana tabacum Acetolactate Synthase

  • Chang, Soo-Ik;Kang, Moon-Kyeong;Kim, Hyun-Ju;Choi, Jung-Do;Namgoong, Sung-Keon
    • BMB Reports
    • /
    • 제29권5호
    • /
    • pp.462-467
    • /
    • 1996
  • Acetolactate synthase (ALS, EC 4.1.3.18) is the first common enzyme in the biosynthesis of leucine, isoleucine, and valine. It is the target enzyme for several classes of herbicides, including the sulfonylureas, the imidazolinones, the mazolopyrimidines, the pyrimidyl-oxy-benzoates, the pyrimidyl-thio-benzens, and the 4,6-dimethoxypyrimidines. An amino-terminal fragment of the sulfonylurea-resistant ALS gene (SurB) from Nicotiana tabaccum was cloned into the bacterial expression vector pGEX-2T. The resulting recombinant plasmid pGEX-ALS1 was used to transform Escherichia coli strain BL21, and the tobacco ALS was expressed in the bacteria as a protein fused with glutathione S-transferase (GST). Polyclonal antibodies against the fusion product (GST-ALS) were produced, and the sensitivity of GST-ALS with the rabbit anti-GST-ALS IgG was up to 50 ng. This antibody was used for Western blot analysis of the partially purified ALS from barley shoots. The results suggest that the polyclonal antibody produced in this study can be used to detect plant ALS.

  • PDF

An Active Site Arginine Residue in Tobacco Acetolactate Synthase

  • Kim, Sung-Ho;Park, En-Joung;Yoon, Sung-Sook;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1799-1804
    • /
    • 2003
  • Acetolatate synthase(ALS) catalyzes the first common step in the biosynthesis of valine, leucine, isoleucine in plants and microorganisms. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. To elucidate the roles of arginine residues in tobacco ALS, chemical modification and site-directed mutagenesis were performed. Recombinant tobacco ALS was expressed in E. coli and purified to homogeneity. The ALS was inactivated by arginine specific reagents, phenylglyoxal and 2,3-butanedione. The rate of inactivation was a function of the concentration of modifier. The inactivation by butanedione was enhanced by borate, and the inactivation was reversible on removal of excess butanedione and borate. The substrate pyruvate and competitive inhibitors fluoropyruvate and phenylpyruvate protected the enzyme against inactivation by both modifiers. The mutation of well-conserved Arg198 of the ALS by Gln abolished the enzymatic activity as well as the binding affinity for cofactor FAD. However, the mutation of R198K did not affect significantly the binding of FAD to the enzyme. Taken together, the results imply that Arg198 is essential for the catalytic activity of the ALS and involved in the binding of FAD, and that the positive charge of the Arg is crucial for the interaction with negatively charged FAD.

인삼사포닌 분획이 E. coli 세포의 단백질 합성에 미치는 영향 (Effect of Ginseng Saponin on the Protein Biosynthesis of E. coli Cells)

  • 고지훈;이희봉;주충노
    • Journal of Ginseng Research
    • /
    • 제7권1호
    • /
    • pp.68-73
    • /
    • 1983
  • E. coli (K-12 W1485) was grown in M9 minimal medium containing ginseng saponin (10-3%-2%) and found that the cells grew most rapidly in the presence of 10-1% saponin. The cells, harvested at the early exponential phase, were transferred to the minimal medium containing 10-1% saponin plus 14C-labelled saponin (0.03 ${\mu}$Ci) and the incubation was continued at 37$^{\circ}C$ for 20 minutes and the cells were fractionated into the outermembrane, innermembrane and cytosol fraction. Radioactivity data showed that the most radioactivity was detected in the innermembrane. The activity of succinate dehydrogenase of the cells grown in the above saponin medium was significantly higher than that of the cells grown in ordinary minimal medium. No significant difference of the glucose 6-phosphate dehydrogenase activity was observed between the two groups. It was also found that the saponin stimulated glucose uptake and biosynthisis of lipids and proteins of the cells. Incorporation of 14C-leucine into the protein fraction of the cell was also accelerated.

  • PDF

항 대사물질 6-Aminonicotinamide가 메추리 조직 내 유리 아미노산에 미치는 영향 (Effects of Antimetabolite 6-Aminonicotinamide on Levels of Free Amino Acids in Various Tissues of Quail)

  • 목창수;김재영;신숙;박인국
    • 한국동물학회지
    • /
    • 제39권3호
    • /
    • pp.299-306
    • /
    • 1996
  • 항 대사물질 6-aminonicotinamide가 메추리 조직의 수용성 단백질, 유리 아미노산 및 단백질 가수분해효소에 미치는 영향을 조사하였다. 간(P<0.05), 심장(P<0.01), 흉부근육 조직(P<0.05)의 수용성 단백질의 함량은 대조군에 비해 현저히 감소하였다. 신장과 흉부근육 조직의 단백질 가수분해효소의 비활성도는 대조군에 비하여 현저히 감소하였다. 신장과 흉부근육 조직의 단백질 가수분해효소의 비활성도는 대조군에 비해 현저히 증가하였다. (P<0.05). 간(P<0.05)의 aspartic acid / asparagine, alanine, valine, methionine, isoleucine, leucine, lysine의 농도는 대조군에 비해 증가하였다. 신장(P<0.05)의 acid / asparagine, alanine, threonine, alanine, proline과 lysine은 증가하였으나 glutamic acid / glutamine의 농도는 감소하였다. 심장에서는 glycine과 methionine 농도는 증가하였으나 glutamic acid / glutamine의 농도는 감소하였다. 흉부근육 조직에서는 arginine의 농도는 감소하였으나 (P<0.05) alanine과 threonine의 농도는 증가하였다 (P<0.05). 본 연구 결과는 항 대사물질인6-aminonicotinamide가 유리 아미노산의 농도를 증가시키므로써 기포 물질 대사에 필요한 에너지를 유지하는 것으로 사료된다.

  • PDF

Functional Expression of Nicotiana tabacum Acetolactate Synthase Gene in Escherichia coli

  • Kim, Hyun-Ju;Chang, Soo-Ik
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.265-270
    • /
    • 1995
  • Acetolactate synthase (ALS, EC 4.1.3.18) is the first common enzyme in the biosynthesis of leucine, isoleucine, and valine. It is the target enzyme for several classes of herbicides, including the sulfonylureas, the imidazolinones, the triazolopyrimidines, the pyrimidyl-oxy-benzoates and the pyrimidyl-thio-benzens. The sulfonylurea-resistant ALS gene (SurB) from Nicotiana tabaccum [Lee et al. (1988) The EMBO J. 7, 1241-1248] was cloned into the bacterial expression plasmid pT7-7. The resulting recombinant plasmid pT7-ALS was used to transform an ALS-deficient Escherichia coli strain MF2000. MF2000 cells transformed with pT7-ALS grew in the absence of valine and isoleucine. ALS activities of 0.042 and 0.0002 ${\mu}mol/min/mg$ protein were observed in the crude extracts prepared from MF2000 cells transformed with plasmids pT7-ALS and pT7-7, respectively. In addition, the former crude extract containing mutant ALS was insensitive to inhibition by K11570, a new chemical class of herbicides. $IC_{50}$ values for K11570 were $0.13{\pm}0.01$ mM. For comparison, a plasmid pTATX containing the wild-type Arabidopsis thaliana ALS coding sequences was also expressed in MF2000. ALS activities of 0.037 ${\mu}mol/min/mg$ protein were observed, and the wild type ALS was sensitive to two different classes of herbicides, K11570 and ALLY, a sulfonylurea. $IC_{50}$ values for K11570 and ALLY were $0.63{\pm}0.07$ and $80{\pm}5.6$ nM, respectively. Thus, the results suggest that the sulfonylurea-resistant tobacco ALS was functionally expressed in the bacteria, and that K11570 herbicides bind to the regulatoty site of ALS enzymes.

  • PDF

Homology modeling of the structure of tobacco acetolactate synthase and examination of the model by site-directed mutagenesis

  • Le, Dung Tien;Yoon, Moon-Young;Kim, Young-Tae;Choi, Jung-Do
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.277-287
    • /
    • 2003
  • Acetolactate synthase (ALS, EC 4.1.3.18; also referred to as acetohydroxy acid synthase) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in microorganisms and plants. Recently X-ray structure of yeast ALS was available. Pair-wise alignment of yeast and tobacco ALS sequences revealed 63% sequence similarity. Using Deep View and automatic modeling on Swiss model server, we have generated reliable models of tobacco ALS based on yeast ALS template with a calculated pair-wise RMSD of 0.86 Angstrom. Functional roles of four residues located on the subunit interface (H142, El43, M350, and R376) were examined by site-directed mutagenesis. Seven mutants were generated and purified, of which three mutants (H142T, M350V, and R376F) were found to be inactivated under various assay conditions. The H142k mutant showed moderately altered kinetic properties. The E143A mutant increased 10-fold in K$_m$ value while other parameters remained unchanged. The M350C mutant was strongly resistant to three tested herbicides, while the R376k mutant can bind with herbicide carder at similar affinity to that of wild type enzyme, as determined by tryptophan quenching study. Except M350V mutant, all other mutants were ate to bind with cofactor FAD. Taken together, it is likely that residues H142 and E143 are located at the active site, while residues M350 and R376 are possibly located at the overlapping region of active site and herbicide binding site of the enzyme. Our data also allows us to hypothesize that the interaction between side chains of residues M350 and R376 are probably essential for the correct conformation of the active site. It remains to be elucidated that, whether the herbicide, upon binding with enzyme, inactivates the enzyme by causing change in the active site allosterically, which is unfavorable for catalytic activity.

  • PDF

Domain Characterization of Cyclosporin Regio-Specific Hydroxylases in Rare Actinomycetes

  • Woo, Min-Woo;Lee, Bo-Ram;Nah, Hee-Ju;Choi, Si-Sun;Li, Shengying;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권10호
    • /
    • pp.1634-1639
    • /
    • 2015
  • Cytochrome P450 hydroxylase (CYP) in actinomycetes plays an important role in the biosynthesis and bioconversion of various secondary metabolites. Two unique CYPs named CYP-sb21 and CYP-pa1, which were identified from Sebekia benihana and Pseudonocardia autotrophica, respectively, were proven to transfer a hydroxyl group at the 4th or 9th N-methyl leucine position of immunosuppressive agent cyclosporin A (CsA). Interestingly, these two homologous CYPs showed different CsA regio-selectivities. CYP-sb21 exhibited preferential hydroxylation activity at the 4th position over the 9th position, whereas CYP-pa1 showed the opposite preference. To narrow down the CYP domain critical for CsA regio-selectivity, each CYP was divided into four domains, and each domain was swapped with its counterpart from the other CYP. A total of 18 hybrid CYPs were then individually tested for CsA regio-selectivity. Although most of the hybrid CYPs failed to exhibit a significant change in regio-selectivity in the context of CsA hydroxylation, hybrid CYP-pa1 swapped with the second domain of CYP-sb21 showed a higher preference for the 9th position. Moreover, hybrid CYPsb21 containing seven amino acids from the 2nd domain of CYP-pa1 showed higher preference for the 4th position. These results imply that the 2nd domain of CsA-specific CYP plays a critical role in CsA regio-selectivity, thereby setting the stage for biotechnological application of CsA regio-selective hydroxylation.