• Title/Summary/Keyword: lens offset

Search Result 16, Processing Time 0.017 seconds

Laser Weldability of Sheet Steels for Tailored Blank Manufacturing (II) -Effect of Joint Configuration- (테일러드 블랭크용 박판 강재의 레이저 용접성 (II) -이음 형상이 용접성에 미치는 영향-)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.100-110
    • /
    • 1998
  • In this paper, the laser weldability of thin gage steels for automobile application is discussed. Welding was carried out with a high power carbon dioxide laser system, and the laser energy was concentrated through a plano-convex lens. Test results showed that the joint gap in the butt welding proved to be one of the critical conditions for an acceptable weld. In the case where the ratio of the gap clearance to the material thickness was slightly bigger than optimal value, the weld strength was reduced showing weld metal fracture. It was possible to obtained a weld penetration ratio of 0.91 when the vertical offset ratio was controlled to be 0.4 or smaller. Results also demonstrated that the weld strength of the lap joint was influenced by travel speed. At the travel speeds lower than 37 mm/s, the weld strength indicated higher value than that of class A recommendation strength of a resistance spot weld based on the KS code. It was clear that the complicated effect of specimen alignment should be considered so as to make a sound weld with high integrity when the laser process was applied to the long weld line.

  • PDF

A Study on the Image Processing of Visual Sensor for Weld Seam Tracking in GMA Welding

  • Kim, J.-W.;Chung, K.-C.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, a preview-sensing visual sensor system is constructed far weld seam tracking in GMA welding. The visual sensor system consists of a CCD camera, a diode laser system with a cylindrical lens, and a band-pass-filter to overcome the degrading of image due to spatters and/or arc light. Among the image processing methods, Hough transform method is compared with the central difference method from a viewpoint of the capability for extracting the accurate feature position. As a result, it was revealed that Hough transform method can more accurately extract the feature positions and it can be applied to real time weld seam tracking. Image processing which includes Hough transform method is carried out to extract straight lines that express laser stripe. After extracting the lines, weld joint position and edge points are determined by intersecting the lines. Even though the image includes a spatter trace on it, it is possible to recognize the position of weld joint. Weld seam tracking was precisely implemented with adopting Hough transform method, and it is possible to track the weld seam in the case of offset angle is in the region of $\pm$ $15^{\circ}$.

  • PDF

Opto-Mechanical Detailed Design of the G-CLEF Flexure Control Camera

  • Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.169-185
    • /
    • 2023
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.

Estimation of Moisture Content in Comminuted Miscanthus based on the Intensity of Reflected Light

  • Cho, Yongjin;Lee, Dong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.

Inspection of the Nuclear Fuel Rod Deformation using an Image Processing (영상처리를 이용한 핵연료봉의 변형 검사)

  • Cho, Jai-Wan;Choi, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a deformation measurement technology of the nuclear fuel rod is proposed. The deformation measurement system include high definition CCD or CMOS image sensor, lens, semiconductor laser line beam marker, and optical & mechanical accessories. The basic idea of the deformation measurement is to illuminate the outer surface of the fuel rod with collimated laser line beam at an angle of 45 degrees or higher. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of laser line beam position in the surface of the fuel rod is imaged as the parabolic beam in the high definition CCD or CMOS image sensor. From the parabolic beam pattern, the ellipse model is extracted. And the slope of the long and the short axis of the ellipse model is found. The crossing point between the saddle point of the parabolic beam and the long & short axis of the ellipse model is taken as the feature of the deformed fuel rod. The vertical offset between feature points before and after fuel rod deformation is calculated. From the experimental results, $50\;{\mu}m$ inspection resolution is acquired using the proposed method, which is three times enhanced than the conventional criterion ($150\;{\mu}m$) of the guide for the inspection of the nuclear fuel rod.

Change of Electro-optical Properties of Polymer Dispersed Liquid Crystal Lens with Addition of Extra Photo-initiator (광개시제 첨가에 따른 고분자 분산형 액정 렌즈의 전기-광학 특성 변화)

  • Kim, Jaeyong;Han, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.321-327
    • /
    • 2014
  • Polymer dispersed liquid crystal lenses of the cell gap of $11{\mu}m$ and $30{\mu}m$ were made from a uniformly dispersed mixture of 40 wt% NOA65 prepolymer - 60 wt% E7 liquid crystal with the variations of the additional photoinitiator. The photoinitiator, benzophenone of 5.0 wt% was originally in the commercial prepolymer NOA65. In this works, the influence of the benzophenone amount intentionally added in the commercial NOA65 on the electrical properties of polymer dispersed liquid crystal lens for smart electronic glasses. The additional quantities of the photoinitiator were 1, 2, 4, 8 and 16 wt% of the weight of NOA65 - E7 mixture. All the electro-optical properties of the sample with added benzophenone such as the driving voltage, the slope of the linear region, the response time and contrast ratio were more improved than that of commercial NOA65 only. These improvements were due to the increase of the average size of E7 liquid crystal droplets in the samples with the increase of the added benzophenon amount. The liquid crystal droplet size was increased from $5.3{\mu}m$ to $12.2{\mu}m$ when the photoinitiator was added from 0 wt% to 8 wt%. At the same concentration range of the photoinitiator, the driving voltage was ranged from 11.1 V to 17.3 V. The slopes of the linear region were in the range of 10.35~13.96 %T/V, which were more enhanced than that of NOA65 without the additional benzophenone. In particular, though the deteriorations by cell gap of $11{\mu}m$ were so effective to offset the influence of the added benzophenone for both rising and falling response time, it is confirmed that there were still somewhat improvement by the additional benzophenone. Response time and contrast ratios of all the samples with excess benzophenone were slightly enhanced.