• Title/Summary/Keyword: length variation test

Search Result 288, Processing Time 0.024 seconds

Development of Fuel Rod Fretting Wear Tester (핵연료봉 프레팅마멸 시험기 개발)

  • 김형규;하재욱;윤경호;강흥석;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.245-251
    • /
    • 2001
  • A fretting wear tester is developed for experimental study on the fuel fretting problem of light water reactor. The feature of the developed tester is it can simulate the existence of gap between spring and fuel rod as well as different contacting force including the just-contact condition (0 N on the contact). Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system. A spacer grid cell is constituted with four strap segments (each segment has a spring). This fretting wear tester can also be used as a fatigue tester of a spacer grid spring with the frequency of more than 10 Hz. It is required to simulate the frequency of the vibrating fuel rod due to flow-induced vibration in a reactor. In fretting wear test, up to two span-length of a fuel cladding tube can be accommodated. A specimen of cladding tube of one span-length is specially designed, which can be extended for two-span test. For .fatigue test, a device for clamping the spring fixture is installed additionally, Presently, the tester is designed for the condition of air environment and room temperature. The variation of the reciprocal distance is measured to check the stability of input force, which will be exerted to the cladding (for fretting wear. test) and the spring (for fatigue test) specimen.

  • PDF

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

A Study on the Jeogori Pattern for 9 to 10 Year-old Boys (만 9세~10세 남아의 저고리 원형설계에 관한 연구)

  • 김미영;여혜린;권영숙
    • Journal of the Korean Society of Costume
    • /
    • v.51 no.7
    • /
    • pp.147-165
    • /
    • 2001
  • The objective of this study was to develop the Jeogori Pattern for 9 to 10 year-old boys To determine the measurement items for the Jeogori Pattern making, applied factor analysis, correlation analysis and regression analysis to the 37 measurement items of the 9 to 10 year-old boys classified as a standard somatotype. To understand the shape and variation of the body surface, analyzed the replica of the upper body surface that was obtained by the method of using surgical tape. Be based on the results of the above studies, designed the Jeogori Pattern. The designed pattern was evaluated by the sensory test. The drafting methods of Jeogori Pattern obtained are as follows. $\circled1$ The measurement items are Bust Girth, Center Back Waist Length, Neck Width, and Hwajang Length. $\circled2$ Jeogori Length Center Back Waist Length$\times$4/3 $\circled3$ Front Body Girth(1/2) : B/2 + 1.5cm Back Body Girth(1/2) : B/2 + 3.5cm $\circled4$ Jin-Dong : B/4 + 3cm $\circled5$ Back Godae Width(1/2) : Neck Width/2 + 1.7cm Front Godae Width(l/2) : Back Godae Width(1/2) - 2cm $\circled6$Back Godae Point is 1.5cm higher than shoulder line, and Front Godae Point is 1.5cm lower than shoulder line. $\circled7$ Back Godae Depth: 1.2cm + 1.5cm = 2.7cm The Jeogori Pattern designed by the above method Is as (fig. 8) The results of the sensory test of the new pattern are as fellows. Except for 2 items, every mark of 24 test items has over 5.0 point and a total average mark is 5.25 point. Witch is a good mark. Therefore the new pattern is valid. Especially, the parts of Git, sleeves and back face have a high mark, so the appearances of those parts are excellent.

  • PDF

A Study on Shifting of Pivoting Point in accordance with Configuration of Ships (선형에 따른 전심의 이동에 관한 연구)

  • 최명식
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

Analysis of the Flowability for Organic·Inorganic Fiber with the Variation of Length (유·무기 섬유 길이조합변화에 따른 섬유 보강 모르타르의 유동성 분석)

  • Park, Yong-Jun;Kang, Byung-Hoi;Lee, Hong-Kyu;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.128-129
    • /
    • 2014
  • In this study, flowability of the mortar added with length change and combination of steel and inorganic fiber has been tested to evaluate the performance of fiber-reinforced mortar. The following results could be made as the conclusion. Early age flow of the mortar has been decreased when fibers added. Slump also decreased with the adding of fibers. For the air content, comparing with Plain, all the specimens with fibers showed higher air content than Plain., Addition of every kinds fibers showed the similar EIS test results.

  • PDF

Effects of Thinning Length on Failure Mode of Local Wall Thinned Pipe (감육 배관의 손상모드에 미치는 감육부 길이의 영향)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho;Kang, Tai-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.357-362
    • /
    • 2001
  • The pipe fracture tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, in order to understand failure behavior of thinned pipe. Pipe specimens were subjected to monotonic bending moment, using 4-points loading system, under internally pressurized condition. From the results of experiment, the failure mode, load carrying capacity, and deformability of local wall thinning pipe were investigated. Failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with length of thinned area was determined by stress type appled to thinning region and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

  • PDF

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.

Finite Element Analysis and Experimental Study About Damage Behavior of Glass by Oblique Impact of Steel Ball (강구 경사충돌에 의한 유리의 손상 거동에 대한 실험적 연구 및 유한요소 해석)

  • Seo, Chang-Min;Kim, Seong-Ho;Kim, Dong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.899-905
    • /
    • 2001
  • The damage behavior of soda-lime glass was studied due to a steel ball of 1mm and 2mm at oblique impact test. The thickness of glass specimen were 3mm and 5mm and oblique degrees of impact were 90$^{\circ}$,70$^{\circ}$ and 50$^{\circ}$. After the steel ball impact test, the crack patterns were investigated using a stereo-microscope. In addition, the finite element method was performed to analyze the stresses distribution and variation in the oblique impacted glass by steel ball. As a result of the impact test, the crack length of 90$^{\circ}$impacted glass was the largest and that of 50$^{\circ}$impacted glass was the smallest. In particular, as the impact velocity and diameter of the steel ball increased, the difference of crack length was prominent. The finite element analysis showed the maximum principle stresses distribution in contact area of glass specimen. The result of analysis was accorded with the crack growth behavior by the oblique impact test.