• 제목/요약/키워드: length of column

검색결과 632건 처리시간 0.022초

Development of Analysis Method of Gardenia Yellow as Natural Colorants and Content Survey in Commercial Foods by HPLC (HPLC를 이용한 천연착색료인 치자황색소의 분석법 개발 및 시판 식품중 함유량조사)

  • Kim, Hee-Yun;Kim, So-Hee;Hong, Ki-Hyoung;Lee, Chul-Won;Kim, Kil-Saeng;Ha, Sang-Chul;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • 제31권4호
    • /
    • pp.945-951
    • /
    • 1999
  • A simple and practical method for the determination of gardenia yellow in foods was developed. In this method, analysis of gardenia yellow in food products has been carried out by the detection of crocetin and/or geniposide as indicator compounds. As a new analytical method for gardenia yellow, we adopted crocetin, which is produced from colored components of gardenia yellow by alkaline hydrolysis, as an indicator compound. The analysis of gardenia yellow was performed by reverse phase high performance liquid chromatography using a Capcell pak $C_{18}$ column at wave length 240 nm (geniposide) and 435 nm (crocetin). The recovery rates of geniposide and crocetin were found to be 93.4% and 87.8% for Dan Mu Ji, 90.2% and 85.9% for milk, 92.8% and 86.5% for snack, respectively. With this method, the range of crocetin and geniposide contents $({\mu}g/g)$ were as follows: $ND{\sim}1.7$ and $ND{\sim}14.1$ for Dan Mu Ji, $ND{\sim}0.2$ and $ND{\sim}13.6$ for milk, $ND{\sim}1.6$ and $ND{\sim}0.9$ for snack, respectively. The detection limits of crocetin and geniposide were 0.07 ${\mu}g/g$ and 0.05 ${\mu}g/g$, respectively.

  • PDF

Rice Growth and Grain Quality in No-till and Organic Farming Paddy Field as Affected by Different Rice Cultivars (무경운 및 유기농 논에서 품종에 따른 벼 생육 및 미질 특성 구명)

  • Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제43권2호
    • /
    • pp.209-216
    • /
    • 2010
  • This study was to find out optimum rice cultivars for organic farming in no-tillage paddy. A field research was conducted the yield, yield components, and qualities of thirty two Korean rice cultivars, and two Japanese rice cultivars. The column length of early rice plant was shorter in medium maturing rice cultivars compared to early, and medium-late maturing rice cultivars. Planthopper population per20-plant was lower in Ilpumbyeo, Dongjinbyeo, Hojinbyeo, Donganbyeo, and Sobeebyeo in that order while was higherin rice cultivars of early maturity. The disease severity of sheath blight was higher in Saechucheongbyeo>Chucheongbyeo>Namwonbyeo>Sangmibyeo in that order, on the other hand, that was lowerinHwaseongbyeo>Junambyeo>Saesangjubyeo=Hitomebore>Ilpumbyeo>Hwayeongbyeo in that order, respectively. The grain yield of Korean rice cultivars was significantly higher in 2.95 Mg $ha^{-1}$ for Hwasinbyeo, 2.91 Mg $ha^{-1}$ for Ilpumbyeo, 2.86 Mg $ha^{-1}$ for Sobeebyeo, 2.73 Mg $ha^{-1}$ for Naepungbyeo, and 2.70 Mg $ha^{-1}$ for Saegyehwabyeo compared with 1.38 Mg $ha^{-1}$ for Hwabongbyeo, 1.62 Mg $ha^{-1}$ for Hwayeongbyeo, and 1.78 Mg $ha^{-1}$ for Haepyeongbyeo of medium maturing rice cultivars, respectively. Toyo taste value of medium maturing rice cultivars tended to higher than that of early, and medium-late maturing rice cultivars. Ripening rate of rice cultivars was significantly positive correlated with Toyo taste value while negative correlated with protein content. According to principal component analysis, these results show that Sangmibyeo, Sangsanbyeo, and Odaebyeo for early maturity, Naepungbyeo, and Sobeebyeo for medium maturity, and Hwasinbyeo, Chucheongbyeo, and Sindongjinbyeo for medium-late maturity were optimum rice cultivars for organic farming in no-tillage paddy.