• Title/Summary/Keyword: length and density

Search Result 1,866, Processing Time 0.035 seconds

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Heat Exchanging Performance as Affected by Arrangement of Heat Exchanging Pipe (열회수장치의 열교환 파이프배치 형식별 열교환 성능)

  • 윤용철;강종국;서원명
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.101-107
    • /
    • 2002
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared far the comparison of heat recovery performance; A-type is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types (B-type and C-type) modified from the control unit are different in the aspects of airflow direction (U-turn airflow) and pipe arrangement. The results are summarized as follows ; 1. In the case of Type-A, when considering the initial cost and current electricity fee required for system operation, it was expected that one or two years at most would be enough to return the whole cost invested. 2. Type-B and Type-C, basically different with Type-A in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than 25m$^3$.min$^{-1}$ . Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This was assumed to be that air flow resistance in high air capacity reduced the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate of Type-B and Type-C was improved by about 5% and 13%, respectively 3. Desirable blower capacity of these heat recovery units experimented were expected to be about 25m$^3$.min$^{-1}$ , and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it was recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., was required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

A Study on Development of Evaluation Method on Riverine Ecobelt (수변 생태벨트 평가방법 개발에 관한 연구)

  • Cho, Yong-Hyeon;Choi, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.123-132
    • /
    • 2014
  • This study aims to develop the diagnostic evaluation method of the riverine ecobelt for construction, conservation, and maintenance of the riverine ecobelt. The value indices in the proposed evaluation method are composed of total 5 fields and 19 elements. The 5 fields are flood control, environmental function, growth of plants, ecobelt function, and restoration potential. Flood control field is composed of total 3 elements such as length, width, and density of green area. Environmental function field is composed of 4 elements such as park use, landscape boundary and edge, microclimate control, non-point pollution control. Growth of plants field is composed of 6 elements such as species composition, forest height, stratum structure, vine plants, plant vitality, and succession of plants. Ecobelt function field is composed of 4 elements such as longitudinal connectivity, lateral connectivity, in-stream forest or habitat, roads on bank top. Restoration potential field is composed of 2 elements such as landform and land use of the immediate vicinity. The score system ranging 1~4 was adopted. The weighting parameters of elements were unified with each other. The final grade system ranging 1~5(1: very good~5: very bad) was adopted, and the final grade was evaluated by the mean values of each field. According to the test application of the diagnostic evaluation method of the riverine ecobelt, the final grades showed effectively the real condition of each site.

Studies on the Tobacco Growth Characteristics under Environmental Conditions between KOREA and U.S.A. (한국과 미국의 재배환경 요인과 담배생육비교)

  • 구한서;박현석;유정은;장기운;이용득
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.454-464
    • /
    • 1986
  • To find main factors to affect tobacco culture and quality, NC 2326 (Nicotiana tabacum L.) was cultivated in Korea and in the United States under different plant density, fertilization, mulching and curing. Among the chemical characteristics of the both experimental soils, the organic matters were similar concentration in both locations but effective phosphorous contents were higher in Oxford in the United States. Plant height, length and width of the largest leaf, leaf thickness, and midrib ratios were larger in Oxford than in Suwon in Korea. Also they were larger in non mulching system than in mulching system. But the total numbers of the leaves were decreased in non mulching system. The content of nicotine was higher in the plant grown in Suwon than in Oxford. The concentrations of nicotine and sugar tend to increase in mulching system comparing of non mulching system. During the growing, the concentration of non-volatile organic acids was higher in Suwon, while it was lower in cured leaf produced in Suwon. Also the contents of total fatty acids were lower in the harvested leaf grown in Suwon, but not in cured tobacco. Forty three compounds identified among the volatile oils from these experimental samples were quantified. The concentrations of the major components related to the tobacco flavour such as damascone, damascenone, solanone, nor-solanadione, and megastigmatrienones were higher in the cured tobacco produced in Oxford rather than in Suwon.

  • PDF

An Improved Concept of Deep Geological Disposal System Considering Arising Characteristics of Spent Fuels From Domestic Nuclear Power Plants (국내 원자력발전소에서의 사용후핵연료 발생 특성을 고려한 심층 처분시스템 개선)

  • Lee, Jongyoul;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.405-418
    • /
    • 2019
  • Based on spent fuels characteristics from domestic nuclear power plants and a disposal scenario from the current basic plan for high-level radioactive waste management, an improved disposal system has been proposed that enhances disposal efficiency and economic effectiveness compared to the existing disposal system. For this purpose, two disposal canisters concepts were derived from the length of the spent fuel generated from the nuclear power plants. In the disposal scenario, the acceptable amount of decay heat for each disposal container was determined, taking into account the discharge and disposal times of spent fuels in accordance with the current basic plan. Based on the determined decay heat of the two types of disposal canisters and the associated disposal system, thermal stability analyses were performed to confirm their suitability to the proposed disposal system design requirement and disposal efficiency assessment. The results of this study confirm 20% reduction in the disposal area and 20% increase in disposal density for the proposed disposal system compared to the existing system. These results can be used to establish a spent fuel management policy and to design a viable commercial disposal system.

A numerical fluid dynamic study of a high temperature operating cyclone (고온 작동 싸이클론 유체역학적 거동 전산 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1033-1040
    • /
    • 2009
  • One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and temperature appears contrary each other. Therefore, the decrease of collection efficiency caused by the high operating temperature mainly due to the decrease of gaseous density can be remedied by increase of operating pressure. After the evaluation of the program, a series of parametric investigations are performed in terms of major cyclone design or operating parameters such as tangential velocity and vortex finder diameter for dusts of a certain range of particle diameters, etc. As expected, tangential velocity plays the most important effect on the collection efficiency. And the efficiency was not affected significantly by the change of the length of vortex finder but the diameter of vortex finder plays an important role for the enhancement of collection efficiency.

Effect of Silicate Fertilizer Application on Zoysiagrass (Zoysia japonica Steud.) Field (들잔디 재배지에서 규산질비료 살포 효과)

  • Bae, Eun-Ji;Kim, Chung-Yeol;Yoon, Jun Hyuck;Lee, Kwang-Soo;Park, Yong-Bae
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • This study was conducted to find out the optimum silicate fertilization for improving the quality and density of zoysiagrass (Zoysia japonica Steud.), the growth of zoysiagrass and changes in chemical properties of soil in field experiments treated with different levels of silicate fertilizer during 3 years from 2012 to 2014. An increase in the silicate fertilizer from 100, 200, to $400kg\;10a^{-1}$ led to a significant increase in the fresh and dry weight of shoots and stolons, the number of shoots and length of stolon, but were not significantly different between 200 and $400kg\;10a^{-1}$. Moreover, soil pH, EC and the contents of available $SiO_2$ were increased as the rate of silicate fertilizer application increased. Thus, these results demonstrated that the silicate fertilizer rate for maximum growth of zoysiagrass was $200kg\;10a^{-1}$ in consideration of improving growth of zoysiagrass and the chemical property of the soil.

Filtering Rate Model of Farming Oyster, Crassostrea gigas with effect of Water Temperature and Size (수온과 크기의 영향을 고려한 양식굴, Crassostrea gigas의 여수율 모형)

  • KIM Yong-Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.589-598
    • /
    • 1995
  • Filtering rates of Crassostrea gigas were experimentally investigated with reference to effects of water temperature and size. Absorptiometric determinations of filtering rates with oysters being fed diatom Chaetoceros calcirtans were carried out in a closed system. Optical density of 675nm in path length 100mm cell used as the indication of food particles absorption was appeared directly In proportion with the concentration of diatom pigment $chlorophyll-\alpha$. In the closed system where $C_0$ is $OD_{675}$ at initial time 0, $C_t$, at time t, and Z is the decreasing coefficient of OD as meaning of instantaneous removal speed, then $C_t=C_0{\cdot} e^{-2t}$, $Z=In(C_t/C_0)/t$. On the assumption that the filtering rate is constant, then removal rate per unit time (d) is $d=-e^{-z}$. If t is used to time unit of hour (hr), the filtering rate (FR) in I/hr is given by $FR=V{\cdot}d=V(1-e^{-z})$, where V is the water volume (I) of the experimental vessel. Filtering rate increased as exponential function with increasing temperature while not over critical limit. The critical temperature for filtering rate was assumed to be between $28^{\circ}C$ and $29^{\circ}C$. And the weight exponent for filtering rate is 0.223. The model formula derived from the results as FR, $Ihr^{-1}$ = $Exp(0.208{\cdot}T-4.324){\cdot} (DW)^{0.223}$ (T<29 $^{\circ}C)$ where T is water temperature $(^{\circ}C

  • PDF

Control Effects of Bemisia tabaci on Eggplant using Sticky Trap (가지에서 끈끈이트랩을 이용한 담배가루이 방제효과)

  • Kim, Ju;Choi, In-Young;Lee, Jang-Ho;Kim, Ju-Hee;Lim, Joo-Rag;Cheong, Seong-Soo;Kim, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.759-772
    • /
    • 2017
  • This experiment was conducted to develop control method for Bemisia tabaci (Gennadius) on eggplant using sticky trap method. According to the color of the sticky traps, the attractiveness of the B. tabaci was the highest in the yellow trap, followed by the green and orange. However, white, blue, red, black and green sticky traps have reduced attractiveness of B. tabaci. In order to improve the efficiency and attractiveness of sticky trap to the B. tabaci, the different kinds of sugars such as glucose, fructose, oligosaccharide, starch syrup and pure sugar were added to sticky traps respectively. However, the effect of B. tabaci attractiveness was low in starch syrup, pure sugar, and non-treated sticky traps. The attracting effect of B. tabaci was depending on the location of sticky trap. The highest value was obtained where sticky traps were located in the top of the eggplant, followed by 30 cm above from the top level. In addition, we were installed up to 40 sticky traps to determine the optimal amount of sticky traps to control B. tabaci in eggplant. When increasing the sticky traps, the number of adult and nymphs of B. tabaci were tended to be decreased significantly. This tendency was more effective in the latter stages than in the early stages. As the number of sticky traps increased, not only the growth rate of eggplant, leaf length, and stem diameter were to be better. But also number of fruits and product marketable value were increased at the early stage of growing as well. The study had proven that the sticky traps had an effect on increasing the yield at the early stage of growth, but the efficiency of controlling decreased due to the high density of B. tabaci of the next generation.

An Optimum Slanting Angle in Reticulated Root Piles Installation under Compressive and Uplift Loads (압축 및 인발하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명보
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-84
    • /
    • 1996
  • In order to investigate the influence of slanting angle of reticulated root piles(RRP) on their bearing capacities, model tests of compressive and uplift loads on RRP with different slanting angles, which were installed in sandy soils with a relative density of 47%, were carried out. Each pile which is made of a steel bar of 5mm in diameter and 300mm in length, is coated with sand to be 6.5mm in diameter. One set of RRP consists of 8 piles which are installed in circular patterns forming two concentric circles, each of which has 4 piles. Slanting angles of RRP for load tests are 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$. In addition, compressive load tests on circular footing whose diameter is the same as the outer circle of RRP were carried out. Test results show that maximum load bearing capacities of RRP by regression analysis are obtained at about 12$^{\circ}$ and 13$^{\circ}$ of slanting angles for compressive and uplift load tests, respectively. Maximum compressive bearing capacity is estimated to be 13oA bigger than that of the vertical RRP and 95% bigger than that of surface footing. Maximum uplift capacity is estimated to be 21% bigger than that of the vertical RRP. And it can be appreciated that increasing the slanting angle makes the load -Settlement behavior more ductile.

  • PDF