• Title/Summary/Keyword: least squares technique

Search Result 324, Processing Time 0.03 seconds

Rapid Compositional Analysis of Naphtha by Near-Infrared Spectroscopy

  • 구민식;정호일;이준식
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1189-1193
    • /
    • 1998
  • The determination of total paraffin, naphthene, and aromatic (PNA) contents in naphtha samples, which were directly obtained from actual refining process, has been studied using near-infrared (NIR) spectroscopy. Each of the total PNA concentrations in naphtha has been successfully analyzed using NIR spectroscopy. Partial least squares (PLS) regression method has been utilized to quantify the total PNA contents in naphtha from the NIR spectral bands. The NIR calibration results showed an excellent correlation with those of conventional gas chromatography (GC). Due to its rapidity and accuracy, NIR spectroscopy is appeared as a new analytical technique which can be substituted for the conventional GC method for the quantitative analysis of petrochemical products including naphtha.

Functional Separation of Myoelectric Signal of Human Arm Movements using Autoregressive Model (자기회귀 모델을 이용한 팔 운동 근전신호의 기능분리)

  • 홍성우;손재현;서상민;이은철;이규영;남문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.76-84
    • /
    • 1993
  • In this thesis, general method using autoregressive model in the functional separation of the myoelectric signal of human arm movements are suggested. Covariance method and sequential least squares algorithm were used to determine the model parameters and the order of signal model to describe six arm movement patterns` the forearm flexion and extension, the wrist pronation and supination, rotation-in and rotation out. The confidence interval to classify the functions of arm movement was defined by the mean and standard deviation of total squares error. With the error signals of autoregressive(AR) model, the result showed that the highest success, rate was abtained in the case of 4th order, and success rate was decreased with increase of order. This technique might be applied to biomedical-and rehabilitation-engi-neering.

  • PDF

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

On B-spline Approximation for Representing Scattered Multivariate Data (비정렬 다변수 데이터의 B-스플라인 근사화 기법)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.921-931
    • /
    • 2011
  • This paper presents a data-fitting technique in which a B-spline hypervolume is used to approximate a given data set of scattered data samples. We describe the implementation of the data structure of a B-spline hypervolume, and we measure its memory size to show that the representation is compact. The proposed technique includes two algorithms. One is for the determination of the knot vectors of a B-spline hypervolume. The other is for the control points, which are determined by solving a linear least-squares minimization problem where the solution is independent of the data-set complexity. The proposed approach is demonstrated with various data-set configurations to reveal its performance in terms of approximation accuracy, memory use, and running time. In addition, we compare our approach with existing methods and present unconstrained optimization examples to show the potential for various applications.

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Frequency-Domain RLS Algorithm Based on the Block Processing Technique (블록 프로세싱 기법을 이용한 주파수 영역에서의 회귀 최소 자승 알고리듬)

  • 박부견;김동규;박원석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.240-240
    • /
    • 2000
  • This paper presents two algorithms based on the concept of the frequency domain adaptive filter(FDAF). First the frequency domain recursive least squares(FRLS) algorithm with the overlap-save filtering technique is introduced. This minimizes the sum of exponentially weighted square errors in the frequency domain. To eliminate discrepancies between the linear convolution and the circular convolution, the overlap-save method is utilized. Second, the sliding method of data blocks is studied Co overcome processing delays and complexity roads of the FRLS algorithm. The size of the extended data block is twice as long as the filter tap length. It is possible to slide the data block variously by the adjustable hopping index. By selecting the hopping index appropriately, we can take a trade-off between the convergence rate and the computational complexity. When the input signal is highly correlated and the length of the target FIR filter is huge, the FRLS algorithm based on the block processing technique has good performances in the convergence rate and the computational complexity.

  • PDF

Identification of Structural Damage with Limited Output Measurement (제한된 출력자료를 이용한 구조물의 손상도 추정)

  • 최영민;조효남;황윤국;김정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.101-108
    • /
    • 2001
  • In the previous study, an improved QRD (QR Decomposition)-ILS(Iterative Least-Squares) method is proposed to estimate the structural parameters at the element level using response data alone without using any information of excitation measurements for the assessment of local damages and deterioration in complex and large structural systems. But for a complex and large structural system, where response measurement at every dynamic degree of freedom(DDOF) is not possible, the absence of some observation points of responses and its effect on the proposed SI method must be studied In the paper, a QRD-ILS technique that utilizes the known intact stiffness information estimated based on the visual inspection, field measurements and/or NDT tests is proposed to identify local damages of fracture critical members using measured responses only at limited DDOFs. A numerical example is used to illustrate the application of this technique. The results indicate that the proposed SI technique is very simple but efficient, since no input information are required with only limited observations.

  • PDF

The combined deterministic stochastic subspace based system identification in buildings

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.315-332
    • /
    • 2011
  • The Combined Deterministic Stochastic Subspace based System Identification Technique (CDSSSIT) is a powerful input-output system identification technique which is known to be always convergent and numerically stable. The technique determines a Kalman state sequence from the projection of the output-input data. The state space matrices are determied subsequently from this Kalman state sequence using least squares. The objective of this paper is to examine the efficiency of the CDSSSIT in identifying the modal parameters (frequencies and mode shapes) of a stiff structure. The results show that the CDSSSIT predicts the modal parameters of stiff buildings quite accurately but is very sensitive to the location of sensors.

Development of Rating Curves Using a Maximum Likelihood Model (최우도 모형을 이용한 수위-유량곡선식 개발)

  • Kim, Gyeong-Hoon;Park, Jun-Il;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.83-93
    • /
    • 2008
  • The non-linear least squares model(NLSM) has long been the standard technique used by hydrologists for constructing rating curves. The reasons for its adaptation are vague, and its appropriateness as a method of describing discharge measurement uncertainty has not been well investigated. It is shown in this paper that the classical method of NLSM can model only a very limited class of variance heterogeneity. Furthermore, this lack of flexibility often leads to unaccounted heteroscedasticity, resulting in dubious values for the rating curve parameters and estimated discharge. By introducing a heteroscedastic maximum likelihood model(HMLM), the variance heterogeneity is treated more generally. The maximum likelihood model stabilises the variance better than the NLSM approach, and thus is a more robust and appropriate way to fit a rating curve to a set of discharge measurements.