• Title/Summary/Keyword: learning physics

Search Result 276, Processing Time 0.019 seconds

Prospect of future water resources in the basins of Chungju Dam and Soyang-gang Dam using a physics-based distributed hydrological model and a deep-learning-based LSTM model (물리기반 분포형 수문 모형과 딥러닝 기반 LSTM 모형을 활용한 충주댐 및 소양강댐 유역의 미래 수자원 전망)

  • Kim, Yongchan;Kim, Youngran;Hwang, Seonghwan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1115-1124
    • /
    • 2022
  • The impact of climate change on water resources was evaluated for Chungju Dam and Soyang-gang Dam basins by constructing an integrated modeling framework consisting of a dam inflow prediction model based on the Variable Infiltration Capacity (VIC) model, a distributed hydrologic model, and an LSTM based dam outflow prediction model. Considering the uncertainty of future climate data, four models of CMIP6 GCM were used as input data of VIC model for future period (2021-2100). As a result of applying future climate data, the average inflow for period increased as the future progressed, and the inflow in the far future (2070-2100) increased by up to 22% compared to that of the observation period (1986-2020). The minimum value of dam discharge lasting 4~50 days was significantly lower than the observed value. This indicates that droughts may occur over a longer period than observed in the past, meaning that citizens of Seoul metropolitan areas may experience severe water shortages due to future droughts. In addition, compared to the near and middle futures, the change in water storage has occurred rapidly in the far future, suggesting that the difficulties of water resource management may increase.

Real-Time 3D Volume Deformation and Visualization by Integrating NeRF, PBD, and Parallel Resampling (NeRF, PBD 및 병렬 리샘플링을 결합한 실시간 3D 볼륨 변형체 시각화)

  • Sangmin Kwon;Sojin Jeon;Juni Park;Dasol Kim;Heewon Kye
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • Research combining deep learning-based models and physical simulations is making important advances in the medical field. This extracts the necessary information from medical image data and enables fast and accurate prediction of deformation of the skeleton and soft tissue based on physical laws. This study proposes a system that integrates Neural Radiance Fields (NeRF), Position-Based Dynamics (PBD), and Parallel Resampling to generate 3D volume data, and deform and visualize them in real-time. NeRF uses 2D images and camera coordinates to produce high-resolution 3D volume data, while PBD enables real-time deformation and interaction through physics-based simulation. Parallel Resampling improves rendering efficiency by dividing the volume into tetrahedral meshes and utilizing GPU parallel processing. This system renders the deformed volume data using ray casting, leveraging GPU parallel processing for fast real-time visualization. Experimental results show that this system can generate and deform 3D data without expensive equipment, demonstrating potential applications in engineering, education, and medicine.

Science Integrated Process Skill of the Students in Science Education Center for the Gifted (과학영재교육원 학생들의 과학 통합 탐구 능력)

  • Jeong, Eunyoung;Kwon, Yi-young;Yang, Joo-sung;Ko, Yu-mi
    • Journal of Science Education
    • /
    • v.37 no.3
    • /
    • pp.525-537
    • /
    • 2013
  • The purpose of this study was to investigate science integrated process skill of the students in science education center for the gifted. In order to do this, 'free-response test for the assessment of science process skills' developed by Yu-Hyang Kim(2013) was administered to 102 students(15 in elementary school science class, 58 in middle school science class I, and 29 in middle school science class II) who attend the program of science education center for the gifted in C university. The assessment tool measured 9 skills ; formulating inquiry questions, recognizing variables, formulating hypotheses, designing experiment, transforming data, interpreting data, drawing conclusions, formulating generalizations, and evaluating the designed experiments. As a result, the students in science education center for the gifted had relatively high scores in the area of 'formulating hypotheses' and 'recognizing variables', but they had relatively low scores in the area of 'transforming data', 'interpreting data', and 'evaluating the designed experiments'. The 2 items' percentage of correct answers were below 40% ; one is about a drawing a line graph in 'transforming data', and the other requires finding improvements of the experimental design in 'evaluation'. There was no significant difference between boys' scores and girls's one, and between the scores of students in the field of biology and those of students in the other fields(physics, chemistry, and earth science) in science integrated process skills. And there was significant difference according to the periods receiving the gifted education in 'formulating generalizations'. The teaching and learning has to focus on improving science integrated process skills in the program of science education center for the gifted and teaching and learning materials needs to be developed.

  • PDF

Effects of Artistic and Technological Context on Physics Problem Solving for High School Students (예술적 상황과 기술적 상황이 고등학생들의 물리 문제해결에 미치는 효과)

  • Lee, Sua;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.985-995
    • /
    • 2015
  • This study examines the effects of the introduction of artistic and technological factors on science problems for the activation of creative and integrated thinking. We developed problems consisting of STA(problems that introduced technological and artistic factors on the College Scholastic Ability Test) and TA(problems that introduced artistic factors in a technological context). Subjects of the study included 60 high school senior students in Daegu. Their problem solving processes for STA were examined. Four students were interviewed using the retrospective interview method. Also, after finishing TA, the problem solving processes of four students were examined. The results of the study are as follows. First, students selected scientific context more than artistic and technological contexts. It was found that students preferred short length problem in order to solve problems in a short time. Second, students were more interested in artistic and technological contexts of STA than scientific context, but felt that they were more difficult. Moreover, students were more interested about the context of TA than scientific context. Third, irrespective of the given contexts in STA, students have a tendency to solve problems through relatively brief ways by using core scientific knowledge. This can seem to mean that there is a possibility to stereotype the problem solving process through repeated learning. Logical thinking and elaboration were observed, but creativity was not conspicuous. In addition, integrated thinking was not observed in all contexts of STA. Fourth, science related problems of TA showed similar results. However, in problems related to everyday life, students made original descriptions that they based on their daily lives. Particularly, in creative design, original ideas and integrated thinking were observed.

Development and Application of Scientific Model Co-construction Program about Image Formation by Convex Lens (볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용)

  • Park, Jeongwoo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.203-212
    • /
    • 2017
  • A scientific model refers to a conceptual system that can describe, explain, and predict a particular physical phenomenon. The co-construction of the scientific model is attracting attention as a new teaching and learning strategy in the field of science education and various studies. The evaluation and modification of models compared with the predicted models of data from the real world is the core of modeling strategy. However, there were only a limited data provided by the teacher in many studies of modeling comparing the students' predictions of their own models. Most of the students were not given the opportunity to evaluate the suitability of the model with the data in the real world. The purpose of this study was to develop a scientific model co-construction program that can evaluate the model by directly comparing the predicted models with the observed data from the real world. Through a collaborative discussion between teachers and researchers for 6 months, a 5-session scientific model co-construction program on the subject 'image formation by convex lenses' for second grade middle school students was developed. Eighty (80) students in 3 classes and a science teacher with 20 years of service from general public co-educational middle school in Gyeonggi-do participated in this 2-week program. After the class, students were asked about the helpfulness and difficulty of the class, and whether they would like to recommend this class to a friend. After the class, 95.8% of the students constructed the scientific model more than the model using the construction rule. Students had difficulties to identify principles or understand their friends, but the result showed that they could understand through model evaluation experiment. 92.5% of the students said that they would be more than willing to recommend this program to their friends. It is expected that the developed program will be applied to the school and contribute to the improvement of students' modeling ability and co-construction ability.

Analysis on Types of Scientific Emoticon Made by Science-Gifted Elementary School Students and their Perceptions on Making Scientific Emoticons (초등 과학영재 학생의 과학티콘 유형 및 과학티콘 만들기에 대한 인식 분석)

  • Jeong, Jiyeon;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2022
  • This study analyzed the types of scientific emoticons made by science-gifted elementary school students and their perceptions on making scientific emoticons. To do this, 71 students from 4th to 6th graders of two gifted science education center in Seoul were selected. Scientific emoticons made by the students were analyzed according to the number and types. Their perceptions on making scientific emoticons were also analyzed through a questionnaire and group interviews. In the analyses for types of text in the scientific emoticons, 'word type' and 'sentence type' were made more than 'question and answer type'. And the majority of students made more 'pun using pronunciation type' and 'mixed type' than other types. They also made more 'graphic type' and 'animation type' than 'text type' in the images of the scientific emoticons. In the analyses for the information of the scientific emoticons, 'positive emotion type' and 'negative emotion type' of scientific emoticons were made evenly. The students made more 'new creation type' than 'partial correction type' and 'entire reconstruction type'. They also used scientific knowledge that preceded the knowledge of science curriculum in their grade level. The scientific knowledge of chemistry was used more than physics, biology, earth science, and combination field. 'Name utilization type' was more than 'characteristic utilization type' and 'principle utilization type'. Students had various positive perceptions in making scientific emoticons such as 'increase of scientific knowledge', 'increase of various higher-order thinking abilities', 'ease of explanation, use, memory, and understanding of scientific knowledge', 'increase of fun, enjoyment, and interest about science and science learning', and 'increase of opportunity to express emotions'. They were also aware of some limitations related to 'difficulties in the process of making scientific emoticons', 'lack of time', and 'limit that it may end just for fun'. Educational implications of these findings are discussed.