• Title/Summary/Keyword: learning failures

Search Result 111, Processing Time 0.024 seconds

Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis (데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반)

  • Hyun-Jong Kim;Sung-Keun Kim;Byoung-Whan Chun;Kyong-Bog, Jin;Seung-Jeong Yang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • Various methods using machine learning and big data have been applied to prevent failures in Data Centers. However, there are many limitations to referencing individual equipment-based performance indicators or to being practically utilized as an approach that does not consider the infrastructure operating environment. In this study, the performance indicators of individual infrastructure equipment are integrated monitoring and the performance indicators of various equipment are segmented and graded to make a single numerical value. Data pre-processing based on experience in infrastructure operation. And an ensemble of RRCF (Robust Random Cut Forest) analysis and Prophet analysis model led to reliable analysis results in detecting anomalies. A failure analysis system was implemented to facilitate the use of Data Center operators. It can provide a preemptive response to Data Center failures and an appropriate tuning time.

A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm (SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델)

  • So-hyang Bak;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.109-121
    • /
    • 2024
  • In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

Learning through Partnerships: Acquirer Firm's Experiences, Deal Partner's Characteristics and the Failure of Cross Border M&A (파트너십을 통합 학습: 인수기업의 경험, 거래 참여 파트너 기업의 특성 그리고 국경 간 M&A 실패)

  • Han, Byoung-Sop;Park, Eun-Kyoung
    • Korea Trade Review
    • /
    • v.41 no.2
    • /
    • pp.61-96
    • /
    • 2016
  • This study investigates the effects of M&A experience of Chinese firms and characteristics of deal partners in cross border M&A deal failures. 1,610 firms that participated in 1,558 cross border M&As from 2000 to November 2015 are used as samples. The dependent variable is the M&A transaction failures, which were cases of deal pending or withdrawal of Chinese firms. Major independent variables are the nationality diversity of transaction partner firm, the partner firm belonging to a developed country, domestic M&A experience of the Chinese firms, M&A experience in a particular target country, etc. After conducting a probit model analysis, we find that deal partner firm's nationality diversity increases the failure rate of M&A. While prior domestic M&A experience in China has no influence on deal failure, prior M&A experience of Chinese and focal firms in a particular country have a negative effect on the probability of deal failure. This study has academic implication on figuring out why firms are likely to fail in the process of strategic activities based on the inter-organizational learning through partnerships perspective.

  • PDF

A Study on the Design of Supervised and Unsupervised Learning Models for Fault and Anomaly Detection in Manufacturing Facilities (제조 설비 이상탐지를 위한 지도학습 및 비지도학습 모델 설계에 관한 연구)

  • Oh, Min-Ji;Choi, Eun-Seon;Roh, Kyung-Woo;Kim, Jae-Sung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart factories have received great attention, where production and manufacturing technology and ICT converge. With the development of IoT technology and big data, automation of production systems has become possible. In the advanced manufacturing industry, production systems are subject to unscheduled performance degradation and downtime, and there is a demand to reduce safety risks by detecting and reparing potential errors as soon as possible. This study designs a model based on supervised and unsupervised learning for detecting anomalies. The accuracy of XGBoost, LightGBM, and CNN models was compared as a supervised learning analysis method. Through the evaluation index based on the confusion matrix, it was confirmed that LightGBM is most predictive (97%). In addition, as an unsupervised learning analysis method, MD, AE, and LSTM-AE models were constructed. Comparing three unsupervised learning analysis methods, the LSTM-AE model detected 75% of anomalies and showed the best performance. This study aims to contribute to the advancement of the smart factory by combining supervised and unsupervised learning techniques to accurately diagnose equipment failures and predict when abnormal situations occur, thereby laying the foundation for preemptive responses to abnormal situations. do.

A Design of a Fault Tolerant Control System Using On-Line Learning Neural Networks (온라인 학습 신경망 조직을 이용한 내고장성 제어계의 설계)

  • Younghwan An
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1181-1192
    • /
    • 1998
  • This paper describes the performance of a full-authority neural network-based fault tolerant system within a flight control system. This fault tolerant flight control system integrates sensor and actuator failure detection, identification, and accommodation (SFDIA and AFDIA), The first task is achieved by incorporating a main neural network (MNN) and a set of n decentralized neural networks (DNNs) to create a system for achieving fault tolerant capabilities for a system with n sensors assumed to be without physical redundancy The second scheme implements the same main neural network integrated with three neural network controllers (NNCs). The function of NNCs is to regain equilibrium and to compensate for the pitching, rolling. and yawing moments induced by the failure. Particular emphasis is placed in this study toward achieving an efficient integration between SFDIA and AFDIA without degradation of performance in terms of false alarm rates and incorrect failure identification. The results of the simulation with different actuator and sensor failures are presented and discussed.

  • PDF

Bug Report Quality Prediction for Enhancing Performance of Information Retrieval-based Bug Localization (정보검색기반 결함위치식별 기술의 성능 향상을 위한 버그리포트 품질 예측)

  • Kim, Misoo;Ahn, June;Lee, Eunseok
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.832-841
    • /
    • 2017
  • Bug reports are essential documents for developers to localize and fix bugs. These reports contain information regarding software bugs or failures that occur during software operation and maintenance phase. Information Retrieval-based Bug Localization (IR-BL) techniques have been proposed to reduce the time and cost it takes for developers to resolve bug reports. However, if a low-quality bug report is submitted, the performance of such techniques can be significantly degraded. To address this problem, we propose a quality prediction method that selects low-quality bug reports. This process; defines a Quality property of a Bug report as a Query (Q4BaQ) and predicts the quality of the bug reports using machine learning. We evaluated the proposed method with 3 open source projects. The results of the experiment show that the proposed method achieved an average F-measure of 87.31% and outperformed previous prediction techniques by up to 6.62% in the F-measure. Finally, a combination of the proposed method and traditional automatic query reformulation method improved the MRR and MAP by 0.9% and 1.3%, respectively.

A Qualitative Study into Special Education Teachers' Failure and Success Factors in Teacher Recruitment Examinations (특수교사들의 임용시험 실패 요인과 성공 요인에 관한 질적 연구)

  • Pack, Mee-Jung;Nam, Yun-Sug
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.221-232
    • /
    • 2019
  • This study aimed at finding out special education teachers' failure and success factors in teacher recruitment examinations. Total of 24 special education teachers participated in the semi-structured interview and 12 separate semantic themes were extracted via continuous comparative analysis on the interview contents. The findings were the following. First, the identified factors for the failures on the examinations were merely following what others do, failure-causing learning strategies, unconditional memorization, ineffective study groups, anxiety and lack of confidence, and lack self-management issue. Second, the identified factors for the success on the examinations were my style of study habits, success-causing learning strategies, balance of understanding and memorization, effective study groups, positivity, and strong self routine. The research proposes several practical applications to prepare the exam regarding this results.

A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance (PCA 및 변수 중요도를 활용한 냉동컨테이너 고장 탐지 방법론 비교 연구)

  • Lee, Seunghyun;Park, Sungho;Lee, Seungjae;Lee, Huiwon;Yu, Sungyeol;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study analyzed the actual frozen container operation data of Starcool provided by H Shipping. Through interviews with H's field experts, only Critical and Fatal Alarms among the four failure alarms were defined as failures, and it was confirmed that using all variables due to the nature of frozen containers resulted in cost inefficiency. Therefore, this study proposes a method for detecting failure of frozen containers through characteristic importance and PCA techniques. To improve the performance of the model, we select variables based on feature importance through tree series models such as XGBoost and LGBoost, and use PCA to reduce the dimension of the entire variables for each model. The boosting-based XGBoost and LGBoost techniques showed that the results of the model proposed in this study improved the reproduction rate by 0.36 and 0.39 respectively compared to the results of supervised learning using all 62 variables.

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

Analysis on Decryption Failure Probability of TiGER (TiGER의 복호화 실패율 분석)

  • Seungwoo Lee;Jonghyun Kim;Jong Hwan Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Probability of decryption failure of a public key cryptography based on LWE(learning with errors) is determined by its architecture and parameter settings. Since large decryption failure probability leads to attacks[1] on scheme as well as degradation of performance, TiGER[2], a Ring-LWE(R)-based KEM proposed for the first round of KpqC, tried to reduce the decryption failure probability by using error correction code Xef and D2 encoding method. However, D'Anvers et al. has shown that the commonly assumed independence of each bit error is not established since in the case of an encryption scheme based on Ring-LWE(R) using an error correction code, there is error dependency which is not negligible[3]. In this paper, since TiGER does not consider the error dependency, we calcualte the decryption failure probability of TiGER by considering the error dependency. In addition, we found that the bit error probability is incorrectly calculated in TiGER, so we present the correct calculation.