• 제목/요약/키워드: learning classification

검색결과 3,326건 처리시간 0.03초

계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지 (Wafer bin map failure pattern recognition using hierarchical clustering)

  • 정주원;정윤서
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.407-419
    • /
    • 2022
  • 반도체는 제조 공정이 복잡하고 길어 결함이 발생될 때 빠른 탐지와 조치가 이뤄져야 결함으로 인한 손실을 최소화할 수 있다. 테스트 공정을 거쳐 구성된 웨이퍼 빈 맵(WBM)의 체계적인 패턴을 탐지하고 분류함으로써 문제의 원인을 유추할 수 있다. 이 작업은 수작업으로 이뤄지기 때문에 대량의 웨이퍼를 단 시간에 처리하는 데 한계가 있다. 본 논문은 웨이퍼 빈 맵의 정상 여부를 구분하기 위해 계층적 군집 분석을 활용한 새로운 결함 패턴 탐지 방법을 제시한다. 제시하는 방법은 여러 장점이 있다. 군집의 수를 알 필요가 없으며 군집분석의 조율 모수가 적고 직관적이다. 동일한 크기의 웨이퍼와 다이(die)에서는 동일한 조율 모수를 가지므로 대량의 웨이퍼도 빠르게 결함을 탐지할 수 있다. 소량의 결함 데이터만 있어도 그리고 데이터의 결함비율을 가정하지 않더라도 기계학습 모형을 훈련할 수 있다. 제조 특성상 결함 데이터는 구하기 어렵고 결함의 비율이 수시로 바뀔 수 있기 때문에 필요하다. 또한 신규 패턴 발생시에도 안정적으로 탐지한다. 대만 반도체 기업에서 공개한 실제 웨이퍼 빈 맵 데이터(WM-811K)로 실험하였다. 계층적 군집 분석을 이용한 결함 패턴탐지는 불량의 재현율이 96.31%로 기존의 공간 필터(spatial filter)보다 우수함을 보여준다. 결함 분류는 혼합 유형에 장점이 있는 계층적 군집 분석을 그대로 사용한다. 직선형과 곡선형의 긁힘(scratch) 결함의 특징에 각각 주성분 분석의 고유값과 2차 다항식의 결정계수를 이용하고 랜덤 포레스트 분류기를 이용한다.

BIM 모델 내 공간의 시멘틱 무결성 검증을 위한 그래프 기반 딥러닝 모델 구축에 관한 연구 (Development of Graph based Deep Learning methods for Enhancing the Semantic Integrity of Spaces in BIM Models)

  • 이원복;김시현;유영수;구본상
    • 한국건설관리학회논문집
    • /
    • 제23권3호
    • /
    • pp.45-55
    • /
    • 2022
  • BIM의 도입에 따라 공간이 개별 객체로 인식되면서 객체화된 공간의 속성정보는 법규검토, 에너지 분석, 피난 경로 분석 등을 위한 기반 데이터로 사용 가능하기에 BIM의 활용성을 넓힐 수 있는 발판을 마련하였다. 그러나 BIM 모델 내 개별 공간 속성의 오기입이나 누락이 없는 시멘틱 무결성(semantic integrity)이 보장되어야 하는데, 다수의 참여자에 의한 수작업으로 진행되는 BIM 모델링 과정 특성 상 설계 오류가 빈번히 발생한다는 문제점이 존재한다. 이를 해결하기 위해 BIM 모델의 공간 정합성 검증을 위한 연구가 다수 진행되었으나, 적용 범위가 한정적이거나 분류 정확도가 낮은 한계점이 존재하였다. 본 연구에서는 공간의 기하정보 뿐 아니라 BIM 모델 내 공간과 부재 간 연결 관계를 Graph Convolutional Networks (GCN) 학습과정에 활용하여 향상된 성능의 공간 자동 분류모델을 구축하고자 하였다. 구축된 GCN 기반 모델의 성능을 공간의 기하정보만으로 학습된 기계학습 모델인 Multi-Layer Perceptron (MLP)과 비교하여 공간 분류 시 연결 관계 적용의 효용성을 검증하고자 하였다. 이를 통해 관계정보 활용 시 약 8% 내외 수준으로 공간 분류 성능이 향상되는 것으로 확인되었다.

인공지능과 증강현실 기술을 이용한 모래성 놀이 가이드 애플리케이션 설계 및 구현 (Design and Implementation of Sandcastle Play Guide Application using Artificial Intelligence and Augmented Reality)

  • 류지승;장승우;문유정;이정진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권3호
    • /
    • pp.79-89
    • /
    • 2022
  • 최근 스마트폰이 널리 보급되고 모바일 기기의 그래픽스 처리 성능이 발전함에 따라 아이들의 물리적인 활동을 돕는 다양한 모바일 애플리케이션들이 연구되고 있다. 본 논문에서는 인공지능과 증강현실 기술을 활용해 모래성 쌓기 놀이를 안내하는 모바일 애플리케이션 SandUp을 제안한다. 모래성을 쌓는 과정에서 아이는 모바일 증강현실 기술을 활용해 제시된 목표 모래성을 현실 세계에 증강하여 살펴볼 수 있다. 또한, SandUp은 모래성의 완성을 돕기 위해 단계적으로 필요한 모래 모양과 Task를 알려주고, 모바일 폰의 카메라와 딥러닝 인식모델을 이용해 실시간으로 현재 진행 상황을 인식하고 시각적, 청각적 피드백을 제공한다. 우리는 Flutter와 TensorFlow Lite를 이용해 SandUp 앱의 프로토타입을 구현하였다. 제안하는 SandUp 앱의 사용성과 효과를 평가하기 위해 성인을 대상으로 설문조사를 수행하고 앱이 목표로 한 4-7세 아이들을 모집하여 실험을 진행했다. 실험 결과와 학부모의 피드백을 분석하여 앱의 발전 가능성 및 개선점을 도출하고 향후 연구 방향을 제시한다.

시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발 (Development of real-time defect detection technology for water distribution and sewerage networks)

  • 박동채;최영환
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1177-1185
    • /
    • 2022
  • 상·하수도 시스템은 사람들에게 안전하고 깨끗한 물을 공급해주는 사회기반시설이며, 특히 상·하수도 관로는 지중에 매설되어 있기 때문에 시스템의 결함검출이 매우 어렵다. 이러한 이유로 상·하수도 관로의 진단은 관로 내부에 카메라 및 드론을 통한 촬영을 하여 사후에 촬영된 영상을 바탕으로 시스템 진단하는 등의 사후 결함검출로 제한되기 때문에, 작업자의 업무 효율 증대와 진단의 신속성을 위해서는 관로의 실시간 탐지기술이 필요하다. 최근 첨단장비 및 인공지능 기법을 활용한 시설물 진단 기술이 개발되고 있지만, 인공지능기반 결함검출 기술은 결함 데이터의 종류 및 형태, 수가 검출 성능에 영향을 주기 때문에 다양한 학습데이터가 필요하다. 따라서, 본 연구에서는 상·하수도 관로의 결함검출 시 탐지 성능 향상을 위해 다양한 결함 시나리오를 3D 프린트를 이용하여 구현하고 이를 수집된 결함 데이터와 함께 학습데이터로 사용한다. 이후 수집된 이미지는 위험도에 따른 분류 및 객체의 라벨링 등의 전처리 작업이 수행되고 실시간 결함탐지를 수행한다. 제안된 기법은 상·하수도시스템 결함검출 시 실시간 피드백을 제공함으로써, 작업자의 진단 누락 가능성을 최소화하며 기존의 상·하수도관 진단업무 처리능력을 향상할 수 있다.

사회문제 해결 연구보고서 기반 문장 의미 식별 데이터셋 구축 (Building Sentence Meaning Identification Dataset Based on Social Problem-Solving R&D Reports)

  • 신현호;정선기;전홍우;권이남;이재민;박강희;최성필
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.159-172
    • /
    • 2023
  • 일반적으로 사회문제 해결 연구는 과학기술을 활용하여 다양한 사회적 현안들에 의미있는 해결 방안을 제시함으로써 중요한 사회적 가치를 창출하는 것을 연구 목표로 한다. 그러나 사회문제와 쟁점을 완화하기 위하여 많은 연구들이 국가적으로 수행되었음에도 불구하고 여전히 많은 사회문제가 남아 있는 상황이다. 사회문제 해결 연구의 전 과정을 원활하게 하고 그 효과를 극대화하기 위해서는 사회적으로 시급한 현안들에 대한 문제를 명확하게 파악하는 것이 중요하다. 사회문제 해결과 관련된 기존 R&D 보고서와 같은 자료에서 중요한 사안을 자동으로 식별할 수 있다면 사회문제 파악 단계가 크게 개선될 수 있다. 따라서 본 논문은 다양한 국가 연구보고서에서 사회문제와 해결방안을 자동으로 감지하기 위한 기계학습 모델을 구축하는 데에 필수적인 데이터셋을 제안하고자 한다. 우선 데이터를 구축하기 위해 사회문제와 쟁점을 다룬 연구보고서를 총 700건 수집하였다. 수집된 연구보고서에서 사회문제, 목적, 해결 방안 등 사회문제 해결과 관련된 내용이 담긴 문장을 추출 후 라벨링을 수행하였다. 또한 4개의 사전학습 언어모델을 기반으로 분류 모델을 구현하고 구축된 데이터셋을 통해 일련의 성능 실험을 수행하였다. 실험 결과 KLUE-BERT 사전학습 언어모델을 미세조정한 모델이 정확도 75.853%, F1 스코어 63.503%로 가장 높은 성능을 보였다.

지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로 (A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model)

  • 김예찬;최광은;정두희
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.217-242
    • /
    • 2022
  • AI 기술이 결합된 지능형 제품은 기술적 차별화를 실현하며 시장 경쟁력을 높일 수 있는 잠재성을 지닌다. 하지만 시장 수용도를 극대화 할 수 있는 AI 기반의 신제품 개발 방법론은 부재하다. 본 연구는 AI 기반의 지능형 제품 개발에 대한 방법론으로서 KANO-QFD 통합 모델을 제안한다. 실증적인 분석을 위한 구체적 사례로 탈모 예측 및 치료 기기에 대한 소비자 요구조건(Customer Requirements)의 유형을 분류하고, 이를 구현하기 위한 기술적 요구사항(Engineering Characteristics)의 상대적 중요도 및 우선순위를 도출하여 지능형 메디컬 신제품 개발의 방향을 제시하였다. 소비자 130명을 대상으로 실시한 설문조사 분석 결과, KANO 카테고리 중 매력적 품질(Attractive Quality) 요소로 미래 탈모 진행 상황에 대한 정확한 예측, 미래 탈모 모습 및 치료 후 개선된 미래 모습을 실물화하여 스마트폰으로 보고, 세련된 디자인, 레이저와 LED 빛 복합 에너지를 이용한 치료 등이 도출되었다. QFD의 품질의 집(House of Quality)을 기반으로 분석한 결과, 탈모 진단 및 예측을 위한 학습 데이터, 두피 스캔용 Micro 카메라 해상도, 탈모 유형 분류 모델, 맞춤화를 위한 개인별 계정 관리, 탈모 진행상황 진단 모델 순으로 상대적 중요도 및 우선순위가 도출되었다. 본 연구는 기존에 선행되지 않았던 AI 기반의 지능형 메디컬 제품 개발에 대한 방향을 제시하였다는 면에서 의의를 지닌다.

합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점 (The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model)

  • 한재상;김현주
    • 한국과학교육학회지
    • /
    • 제43권3호
    • /
    • pp.237-251
    • /
    • 2023
  • 본 연구는 합성곱 신경망을 활용한 자동 채점 모델을 설계하고 학생의 운동학 그래프 답안에 적용함으로써, 과학 그래프 답안에 대한 자동 채점의 가능성을 탐색하였다. 연구자가 작성한 2,200개의 답안을 2,000개의 훈련 데이터와 200개의 검증 데이터로 데이터셋을 구성하고, 202개의 학생 답안을 100개의 훈련 데이터와 102개의 시험 데이터로 데이터셋을 구성하여 연구를 진행하였다. 먼저, 자동 채점모델을 설계하고 성능을 검증하는 과정에서는 연구자가 작성한 답안 데이터셋을 활용하여 그래프 이미지 분류에 최적화되도록 자동 채점모델을 완성하였다. 다음으로 자동 채점 모델에 훈련 데이터셋을 여러 유형으로 학습시키면서 학생의 시험 데이터셋에 대한 채점을 수행하여 훈련 데이터의 양이 많고 다양할수록 자동 채점 모델의 성능이 향상된다는 것을 확인하였고, 최종적으로 인간 채점과의 일치율은 97.06%, 카파 계수는 0.957, 가중 카파 계수는 0.968을 얻었다. 한편, 훈련 데이터로 학습되지 않은 유형의 답안의 경우 인간 채점자들 간에는 채점이 거의 일치하였으나, 자동 채점 모델은 일치하지 않게 채점하는 것을 확인하였다.

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

크라우드소싱 드론 영상의 기하학적 품질 자동 검증 (Automatic Validation of the Geometric Quality of Crowdsourcing Drone Imagery)

  • 이동호;최경아
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.577-587
    • /
    • 2023
  • 크라우드소싱(crowdsourcing) 공간 데이터 활용 연구가 활발히 진행되고 있으나 데이터 품질의 불확실성으로 인한 문제점이 제기되고 있다. 특히 드론 영상 데이터셋에 품질이 낮은 데이터가 포함될 경우, 출력되는 공간 정보의 품질이 저하될 수 있다. 이를 위해 본 연구에서는 크라우드소싱된 영상의 기하학적 품질을 자동으로 검증하는 방법론을 제안하였다. 주요 품질 요소로는 영상의 공간해상도, 해상도 변화량, 매칭점 재투영 오차, 번들 조정 결과 등을 입력변수로 활용하였다. 공간 정보 생성에 적합한 영상을 분류하기 위해 학습 및 검증 데이터를 구축하고, radial basis function (RBF) 기반의 support vector machine (SVM) 모델로 학습을 진행하였다. 학습된 SVM 모델의 분류 정확도는 99.1%를 기록하였다. 품질 검증 모델 효과를 확인하기 위해 학습 및 검증에 사용하지 않은 드론 영상에 대하여 해당 모델을 적용하기 전후의 영상 데이터셋으로 각각 정사영상을 생성하고 비교하였다. 그 결과 모델 적용을 통하여 정사영상에 포함될 수 있는 다양한 왜곡을 줄이고 객체 식별력을 증대시키는 것을 확인하였다. 제안된 품질 검증 방법론은 다양한 품질의 크라우드소싱 데이터를 입력으로 받아 양질의 정보만을 자동 선별하게 함으로써 공간정보 생성에서의 활용 가능성을 증대시킬 것으로 기대한다.

중소기업의 ESG평가에 대한 전략적 대응방안 탐색적 연구 (An Exploratory Study on the Strategic Responses to ESG Evaluation of SMEs)

  • 박윤수
    • 벤처창업연구
    • /
    • 제18권1호
    • /
    • pp.47-65
    • /
    • 2023
  • 이해관계자 요구와 지속가능금융 성장에 따라 ESG경영과 이를 반영한 ESG평가 대응이 중요해지고 있다. 중소기업 또한 공급망 관리와 금융거래에 영향을 주는 ESG평가 규범화 흐름에 대비해야 한다. 그러나 중소기업은 생존에 우선 집중할 수밖에 없어 ESG경영 도입에 제약이 따른다. 또한 중소기업의 ESG경영 당위성에 대한 연구가 부족하고 ESG 평가체계 및 평가등급의 변동성 또한 높아지고 있다. 이에 따라 선행연구 고찰과 함께 ESG 평가동향 및 실무지침서의 비판적 검토가 필요하다. 탐색적 연구 결과, 중소기업은 실행전략 차원에서 생존기반이 담보되는 여건 하에 ESG경영을 도입하고 ESG창업에 특화하는 노력이 필요하다. 또한 조직적 학습과 소프트웨어 관리로 ESG평가에 유리한 정보 축적과 함께 다양한 평가결과의 전략적 활용에 중점을 둘 필요가 있다. 본 연구의 시사점은 중소기업의 ESG평가에 있어 중소기업에 대한 분류기준과 ESG 평가등급과 장기 생존률과의 관계 연구 등 다양한 연구가 필요하다는 점이다. 정부정책 차원에서도 생존 가능성과 함께 업종과 규모별로 상이한 수준의 ESG경영 도입 및 ESG평가가 이루어지도록 중소기업 전용 ESG 평가제도의 검토가 필요한 시점이다.

  • PDF