• Title/Summary/Keyword: lean concrete

Search Result 51, Processing Time 0.023 seconds

Effect of Inorganic Impurities on the Properties of Lean Concrete (재생골재중에 포함된 이물질이 빈배합콘크리트 물성에 미치는 영향)

  • Kim Jin-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.81-84
    • /
    • 2005
  • We investigated the effect of inorganic impurities such as clay bricks and asphalt concrete in recycled aggregate on the properties of lean concrete. The optimized moisture content of lean concrete with clay bricks increased, because the absorption ratio of clay bricks is high. On the other hand, lean concrete with asphalt concrete produced an opposite result owing to low absorption ratio. The results showed that inorganic impurities did not have a significant effect on compressive .strength of lean concrete containing below 30$\%$ clay bricks and below 10$\%$ asphalt concrete.

  • PDF

An Experimental Study on the Non-Structural Lean Concrete's Dry Shrinkage with industrial by-product (산업부산물을 활용한 비구조용 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Hwang, Moo Yeon;Yang, Wan Hee;Park, Dong Cheol;Kim, Woo Jea
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.216-217
    • /
    • 2017
  • Slag cement or ternary blended cement is mainly used for non-structural lean concrete for the purpose of foundation work or protection of the waterproof layer on the roof of buildings. However, such non-structural lean concrete has a lot of drying shrinkage cracks, which makes it difficult to maintain the quality of the structure. Therefore, in this study, the compressive strength and the drying shrinkage of ternary blended cement(blended of portland cement, blast furnace slag, fly ash from combined heat and power Plant) for non-structural lean concrete were examined. As a result, it was confirmed that this non-structural lean concrete reduced drying shrinkage compared to the conventional ternary blended cement using fly ash from power plant.

  • PDF

Application of Granulated Blast Furnace Slag to the Lean Concrete Base of Concrete Pavement (콘크리트포장 린콘크리트 기층에 고로슬래그 미분말 적용에 관한 연구)

  • 류명찬;엄주용;김대영;손진군
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.187-190
    • /
    • 1999
  • An experimental study is carried out to estimate the way of applying the granulated blast furnace slag[GBFS] to the lean concrete base of concrete pavement. According to the test results, this application seems promising. For this application, mixing percent of GBFS ranging from 30 to 50 is recommendable at this stage. And performance of base mixed with GBFS is greatly affected by the curing and placing condition. As long as all requirements for application of GBFS to the base is satisfied, better performance is expected.

  • PDF

Experimental Application of the Ground Granulated Blast-Furnace Slag to the Lean Concrete Subbase Course (고로슬래그 미분말을 활용한 콘크리트포장 린콘크리트 보조기층 시험 적용)

  • 류명찬;유태석;엄주용;김대영;손진군
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1091-1094
    • /
    • 2000
  • An experimental study is carried out to estimate the way of applying the granulated blast furnace slag[GBFS] to the lean concrete subbase of concrete pavement. According to the test results, this application seems promising. For this application, mixing percent of GBFS ranging from 30 to 45 is recommendable at this stage. Expected benefits using GGBFS in the field of concrete pavement include reduced shrinkage crack, reduced pavement thickness, and extended service life.

Evaluation of Mechanical Properties and Fiber Dispersing Characteristics of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash (도로 기층 재료로 활용하기 위한 섬유보강 빈배합 콘크리트에 플라이애시와 리젝트애시를 사용한 경우 역학적 특성 및 섬유 분산성 분석)

  • Jang, Young Jae;Park, Cheol Woo;Park, Young Hwan;Yoo, Pyeong Jun;Jung, Woo Tae;Kim, Yong Jae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • PURPOSES: As pavement generally provides service shorter than an expected life cycle, maintenance cost increases gradually. In order to help extending the service life and reduce maintenance cost, a new multi-functional composite pavement system is being developed in Korea. METHODS: This study is a part to develop the multi-functional composite pavement and is to investigate the mechanical performances of fiber-reinforced lean concrete for pavement subbase. The inherent problem of fiber reinforced concrete is dispersion of fibers in concrete mix. This study additionally evaluated fiber dispersion characteristics with respect to different fiber types. RESULTS: From the test results, the compressive strengths of the concretes satisfied the required limit of 5MPa at 7days. The standard deviation of the measured number of fibers were lower in the order of nylon, steel fiber and polypropylene. CONCLUSIONS: Reject ash was shown to be satisfactory as a replacement material to Portland cement in lean concrete base. The fiber volume fraction is suggested to be 0.4% even though the fracture toughness did not vary significantly with respect to fiber types. However, fracture energy absorbed up to complete failure increased with the increased fiber volume fraction increment.

Lean Concrete Using the Site-crushed Recycled Aggregates (현장파쇄 재생골재 활용 빈배합 콘크리트)

  • 심재원;김진철;강혜진;조규성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.243-248
    • /
    • 2003
  • To select the proper material for lean concrete, the recycled aggregates produced by 3 crushers, such as jaw, impact and mill-treated, were investigated for the gradation and the compaction, and strength of concrete made of them. The experiments for all the recycled aggregates used, showed that the cylinders made of them had 7-day compressive strengths over 50kgf/$cm_2$, the provision of qualification, and the OMCs are in the range 5.7% to 6.8%. Also, the unit cement contents for the impact-crushed are 158kg/$cm_2$.

  • PDF

Application for Lean Concrete Using Basic Oxygen Furnace-Slag (제강 풍쇄 슬래그 잔골재를 활용한 빈배합콘크리트 적용성 연구)

  • Kim Jin-Cheol;Shim Jae-Won;Jo Kyu-Seong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.177-180
    • /
    • 2004
  • In these days the exhaustion of natural sand has been highlighted with the environmental damages due to excavating sea-sand. Many researchers and engineers have investigated some materials to replace natural sand with, and were interested in using the basic oxygen furnace-slag, the industrial by-product, as fine aggregate. One of the drawbacks to using BOF-slag as a aggregate is to be gradually expanded, and needed the time-consuming process, but some engineers in Korea tackled it recently. In this study, the stabilized BOF-slag was used for lean concrete under the laboratory condition. After testing the several properties - dry density, compressive strength, and young's modulus-, it was found that the dry density was proportionally governed by BOF-slag content and the 7-day compressive-strength was $110\~120\%$ of the natural sand-made. Therefore, BOF-slag is applicable to the lean concrete because they greatly satisfied the required strength, $50kgf/cm^2$.

  • PDF

Mechanical Performance of Fiber Reinforced Lean Concrete for Subbase of Newly Developed Multi-Functional Composite Pavement System (다기능 복합 포장용 섬유보강 콘크리트 기층 재료의 역학적 특성평가)

  • Jang, Young-Jae;Park, Cheol-Woo;Park, Young-Hwan;Jung, Woo-Tai;Choi, Sung-Yong;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.21-29
    • /
    • 2012
  • PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS: It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained.

Application of Recycled Aggregate in Job site as Anti-freezing and Lean Concrete Base Materials (현장파쇄 재생골재의 동상방지층 및 빈배합 콘크리트 기층 시험시공연구)

  • Kim, Jin-Cheol;Shim, Jae-Won;Cho, Kyou-Sung;Choi, Go-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.25-33
    • /
    • 2004
  • The waste concrete produced by the process of the highway construction and management, has been crushed in-situ, and the waste aggregate has been experimentally used for anti-freezing layer and lean concrete. After testing the bearing capacity on anti-freezing layer, it was found that when the waste aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2$\sim$20mm sieve increased by 5$\sim$13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. The compressive strength of lean concrete using recycled aggregate was 71$\sim$85% of the natural coarce aggregate made, but nevertheless the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, $57.5kgf/cm^2$.

  • PDF

A Study on the Shapes of Women′s Neck and Shoulder in Dressmaking - According to Body Type and Age Group - (의복설계를 위한 성인여성의 頸部 및 肩部의 유형화 II - 체형별.연령층별 변화 분석 -)

  • 김희숙
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.5
    • /
    • pp.754-770
    • /
    • 2000
  • The definite objects of this study are as follows ; 1. The study presents concrete objects of the shape of adult women's neck and shoulder after comparing and analyzing the features of five age groups ; the former young age, the latter young age, the former middle age, the latter middle age, the latter middle age and the old age. 2. The study presents concrete objects of adult women's neck and shoulder by the body types ; bend-forward type, straight type and lean-back type in order to be examined the body types. The results of this study are as follows ; 1. The shape of neck and shoulder needs the several concrete objects of each types because of the variable factors in size and body types. But the concrete objects of the types referred in five age groups contain all the important factors and enable to design the body suitable clothes. 2. This study shows that generally bend-forward type contains rising shoulder and lean-back type contains drooping shoulder, and straight type contains average value of neck and shoulder. The results of this study developed the body-suitable clothes of bend-forward type, straight type and lean-back type.

  • PDF