• Title/Summary/Keyword: leak gases

Search Result 37, Processing Time 0.031 seconds

Leak Test for Propulsion System of Launch Vehicle (발사체 추진 시스템의 기밀시험)

  • Lim, Ha-Young;Han, Sang-Yeop;Yi, Moo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • There is close correlation between the reliability of the launch vehicle and the leakage of the propellants or gases from the launch vehicle. This paper describes the definition of the leak rate to determine the quantity of the leakage and introduce the unit conversion of the leak rate. The main parameters for the leak rate were considered. The requirements for the gaseous for the leak test of launch vehicle and various leak test methods were introduced. Leak test method and procedure used in space launch vehicle were briefly described.

Pneumatic Test of Components and Systems of Launch Vehicle (발사체 구성품 및 시스템의 공압시험)

  • Lim, Ha-Young;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.904-907
    • /
    • 2011
  • Various types of gases and propellants are used in launch vehicle. In order to fulfill the mission of the launch vehicle, the components and systems used in launch vehicle should ensure flawless operation in these environments. The pneumatic test is the test performed using compressed gas to prove requirements of the components and systems. This paper describes the requirements of the gas quality for pneumatic test, leak test method, and pneumatic test of the launch vehicle.

  • PDF

Analysis of Gases in Nuclear Fuel Rod by Quadrupole Mass Spectrometry (Quadrupole Mass Spectrometry를 이용한 핵연료봉내 기체분석)

  • Kim, Seung-Soo;Kang, Moon-Ja;Park, Soon-Dal;Park, Yong-Joon;Joe, Kih-Soo
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.94-98
    • /
    • 1999
  • An analysis method of components and isotopic compositions of low pressure gases from nuclear fuel rod using quadrupole mass spectrometer was studied. The calibration curves of each gas in pure and mixtures of He, $N_2$, $O_2$, Ar, Kr and Xe were obtained as a function of pressure and concentration, respectively. Effect of molecular leak, located between sample chamber and analyser chamber, on the sensitivites was also studied. The results suggested that samples could be analysed accurately at the same analytical condition as that of synthetic gas mixture. The difference of sensitivities among isotopes of Kr and Xe was not observed in the range of measured pressure.

  • PDF

A Study on Explosion Risk Management for Hot Oil Heater (열매체 가열기 설비에서의 폭발위험관리에 관한 연구)

  • Jang, Chul;Kwon, Jin-Wook;Hwang, Myoung-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • In the industrial field, various type of fuel have been used for product processing facilities. Recent for 10 years, the usage of natural gas (NG) was gradually increased. Because it has many merits; clean fuel, no transportation, storage facility and so on. There are common safety concept that strict explosion protection approaches are needed for facilities where explosive materials such as flammable liquid, vapor and gases exist. But some has an optimistic point of view that the lighter than air gases such as NG disperse rapidly, hence do not form explosion environment upon release into the atmosphere, many parts has a conventional safety point of view that those gases are also inflammable gases, hence can form explosion environment although the extent is limited and present. In this paper, the heating equipments (Hot Oil Heater) was reviewed and some risk management measures were proposed. These measures include hazardous area classification and explosion-proof provisions of electric apparatus, an early gas leak detection and isolation, ventilation system reliability, emergency response plan and training and so on. This study calculates Hazardous Area Classification using the hypothetical volume in the KS C IEC code.

Leak and Leak Point Prediction by Detecting Negative Pressure Wave in High Pressure Piping System (저압확장파 검출을 통한 배관 누출 및 누출위치 예측)

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Dong-Hyuk;Kim, Young-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods, which have been recently suggested on pipeline network. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using CFD++, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave and verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. For the application of long pipe line system. The method of 1-dimensional analysis has been suggested and verified with results of CFD++.

  • PDF

A Study on Flow Analysis according to the Cause of Gas Leakage in the Specialty Gas Supply Device for Semiconductors (반도체용 특수가스 공급장치 내부에서의 가스누출 원인에 따른 유동해석에 관한 연구)

  • Kim, Jung-Duck;Kwon, Ki-sun;Rhim, Jong-Guk;Yang, Won-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.42-51
    • /
    • 2021
  • Facilities that supply specialty gases used in semiconductor manufacturing mainly handles with hazardous and dangerous substances with flammable, toxic, and corrosive properties, and gas cabinets are mainly used as such supply facilities. The effects of the supply facilities were analyzed for each leak through the rupture disk in the gas cabinet and a leak where the leak hole. In this case, gas leaked to the outside depending on the leak area. It is a factor that creates a risk depending on the concentration of the leaked gas. Depending on the risk of leakage, all measures such as safe operation procedures should be reviewed again.

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.

The Development and Performance Evaluation of the Air-preheating Heat Exchanger for Ultra-high Temperature Applications (초고온융 공기예열식 열교환기의 개발 및 성능 평가)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.78-84
    • /
    • 1999
  • A compact air-preheating type heat exchanger was developed and tested for the ultra-high temperature heat recovery applications. For the direct use of exhaust gases up to $1200^{\circ}C$, the heat exchanger adopted a ceramic core with high strength and low thermal expansion coefficient less than $1{\times}10^{-6}^{\circ}C^{-1}$. The ceramic core was fabricated by special extrusion and bonding techniques. To minimize thermal stresses in the core, spring-loaded sealing mechanism was designed and successfully installed. 1-pass air flow scheme was adopted for the compactness and cost-savings. The pressure test for the ceramic core showed no failure under 35 kPa and less than 3% leak under 7 kPa. Flue gas simulation system was developed to investigate the performance of the heat exchanger. The test results showed normal operations of the heat exchanger up to $1200^{\circ}C$ of exhaust gases and relatively high heat recovery efficiencies of 31~39% depending upon exhaust gas temperatures..

  • PDF

Development of Methane Gas Leak Detector Using Mid-infrared Ray Sensors with $3.2\;{\mu}m$ ($3.2\;{\mu}m$ 중적외선 센서를 이용한 메탄가스누출검지기의 개발)

  • Park, Gyou-Tae;Lyu, Keun-Jun;Han, Sang-In;Oh, Jeong-Seok;Kim, Ji-Yoon;Ahn, Sang-Guk;Yoon, Myung-Seop;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.48-52
    • /
    • 2008
  • According to extremely industrial growth, gas facilities, equipments and chemical plants are gradually increased due to incremental demands of annual amount of gases. The safety management of gases, however, is still far from their requirements. Methane, the principal ingredient of natural gas, is inflammable and explosive and is much used in factories and houses. Therefore, these gas safety management is essential. So, we, with a program of the gas safety management, hope to develop the detection system of methane gas leak using mid-infrared ray LED and PD with $3.2\;{\mu}m$. The cryogenic cooling device is indispensible at laser but needless at LED driven on the room temperature if manufacturing optical sensor with $3.2\;{\mu}m$. It, consequently, is not only possible to implement for subminiature and portable type but also able to speedily detect methane of extremely small quantities because the $CH_4$ absorption intensity at $3.2\;{\mu}m$ is stronger than that at $1.67\;{\mu}m$. Our objective of research is to prevent gas leak accidents from occurring previously and to minimize the extent of damage from them.

  • PDF

Analysis of Greenhouse Gas Emission associated with Clean Energy Agriculture System Development (청정에너지농업시스템 개발에 따른 실증단지의 온실가스배출량 분석)

  • Kim, Tae-Hoon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.643-658
    • /
    • 2015
  • This study presents detailed emission of greenhouse gases of using Clean Energy Agriculture System according to a cradle-to-gate life-cycle assessment, including emission from energy use and leak of Biogas. Calculations were done with the PASS software and the covered gases are $CH_4$, $N_2O$ and $CO_2$, Total GHG fluxes of amount to $1719.03kgCO_2/day$, $39.63kgCO_2/day$ (2.31%) are from facility house process, $0.19kgCO_2/day$ (0.01%) are from transport process, $696.72kgCO_2/day$ (40.53%) are from Anaerobic digestion process, $846.61kgCO_2/day$ (49.25%) are from Heating and cooling system, $135.88kgCO_2/day$ (7.90%) are from Fertigation production process. The results suggest that for effective reduction of GHG emissions from Facility house using clean energy. Reduction targets should address both the production process as defined by IPCC sectors and the consumption process. An LCA assessment as presented here could be a basis for such efforts.